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GRAPH THEORY 
 
1. Introduction 
In recent years graph theory has become established as an important area of mathematics 
and computer science.  The origins of graph theory can be traced back to Swiss 
mathematician Euler and his work on the Königsberg bridges problem (1735), shown 
schematically in Figure 1.  
 
 

 
 
 
 
 
 
 

 
 

Figure 1: Bridges of Königsberg 
 
 
Königsberg was a city in Germany (it is now called Kaliningrad and is in western Russia) 
and the river Pregel, with an island in the middle, ran through it.  Seven bridges were built 
so that the city’s inhabitants could travel between the four parts of the city; P, Q, R and S in 
Figure 1.  The people wondered whether or not it was possible to walk around the city in 
such a way that each bridge was crossed exactly once, ending up at the starting point.  
However, all attempts to do so, including Euler’s, ended in failure.  Euler reasoned that 
anyone standing on land would have to have a way to get on and off.  Therefore each land 
mass would need an even number of bridges, or if the journey started at one land mass and 
ended at another, then only those two land masses could have an odd number of bridges.  
However, in Königsberg each land mass had an odd number of bridges explaining why all 
seven bridges could not be crossed without crossing one more than once.  In formulating 
his solution Euler simplified the bridge problem by representing each land mass as a point 
and each bridge as a line as shown in Figure 2, leading to the introduction of graph theory 
and the concept of an Eulerian graph.  
 
 
Another two well known examples from graph theory are: 
 

1. How many colours do we need to colour a map so that every pair of countries with a 
border in common have different colours?  

2. Given a map of several cities and the roads between them, is it possible for a 
travelling salesman to visit (pass through) each of the cities exactly once?  

 
Some of the applications of graph theory include: communication network design, GPS to 
find the shortest path between two points, design of electrical circuits and modelling of the 
Worldwide Web. 
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2. Definitions 
The Königsberg Bridge problem can be represented diagramatically by means of a set of 
points and lines.  The points P, Q, R and S are called vertices, the lines are called edges (or 
arcs) and the whole diagram is called a graph. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Graph theory representation of the Königsberg bridge problem 
 
 
A graph, G, is a mathematical structure which consists of: 
 

(i).  a set V = V(G) whose elements are called vertices, points or nodes of G. 
(ii).  a set E = E(G) of unordered pairs of distinct vertices called edges of G. 

 
Such a graph is denoted G = { V(G), E(G) } or G = { V, E }.  
 
Example 1 
 
 
 
 
 
 
 
 
 

 
Figure 3: Graph with 4 vertices and 4 edges 

 
 
The set V consists of the vertices, 1, 2, 3 and 4, i.e. V(G) = { 1, 2, 3,4 } 
 
 
The set E consists of the edges, e = (1, 2), f = (2, 4), g = (3, 4) and h = (2, 3),  
i.e. E(G) = { (1, 2), (2, 4), (3, 4), (2, 3) }. 
 
Hence, G = { V(G), E(G) } = { { 1, 2, 3,4 }, {(1, 2), (2, 4), (3, 4), (2, 3)} }. 
 
An undirected graph is a graph in which the edges have no orientation.  Hence, in an 
undirected graph the edge set is composed of unordered vertex pairs.  In Fig. 3 for example, 
the edge (1, 2) is considered identical to the edge (2, 1).   
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If X and Y are vertices of a graph, G, then X and Y are said to be adjacent if they are joined 
by an edge.   
In Fig. 3, 1 and 2 are adjacent, 2 and 4 are adjacent but 1 and 4 are not adjacent. 
 
 
An edge in a graph that joins two vertices is said to be incident to both vertices. 
In Fig. 3, edge e is incident to vertices1 and 2, h is incident to vertices 2 and 3.   
 
 
In Fig. 3, 1 and 2 are called the endpoints of e and e is said to connect 1 and 2. 
 
 
The order of a graph, denoted | V(G) |, is the number of vertices contained in G. 
In Fig. 3, | V(G) | = 4. 
 
The size of a graph, denoted | E(G) |, is the number of edges contained in G. 
In Fig. 3, | E(G) | = 4. 
 
 
The degree of a vertex X, written deg(X), is the number of edges to which X is incident.   
In Fig. 3  deg(1) = 1,  deg(2) = 3,  deg(3) = 2,  deg(4) = 2 
 
Any vertex of degree zero is called an isolated vertex and a vertex of degree one is an end-
vertex. 
 
A vertex is said to be even or odd according to whether its degree is an even or odd 
number.  In Fig.3 vertices 1 and 2 are odd while vertices 3 and 4 are even.  
 
If the degrees of all the vertices in a graph, G, are summed then the result is an even 
number.  Furthermore, this degree is actually twice the number of edges, as each edge 
contributes 2 to the total sum.  We have the following lemma: 
 
Lemma (Handshaking Lemma) 
In any graph the sum of the vertex degrees is equal to twice the number of edges, i.e.  
 

( )
( )

( )GEX
GVX

2deg =∑
∈

 

 
Proof: In a graph G an arbitrary edge, XY, say, contributes 1 to deg(X) and 1 to deg(Y).  
Hence the degree sum for the graph is even. 
 
Note: A corollary of the Handshaking Lemma states that the number of odd vertices in a 
graph must be even. 
 
The degree sequence of an undirected graph G is a bracketed list of the degrees of all the 
vertices written in non-decreasing order. 
The degree sequence of the graph in Fig. 3 is, (1, 2, 2, 3). 
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A vertex is a cut-point if removal of the vertex disconnects the graph. 
 
Example 2: In graph below vertex 2 is a cut-point as its removal disconnects the graph.  
The resulting graph has two connected components. 
 
 
 
 
 
 
 
 
 
An edge is a bridge (or isthmus) if removal of the edge disconnects the graph. 
 
Example 3: Edge (2, 6) is a bridge as its removal disconnects the graph. 
 
 
 
 
3.Graph Structures 
In this section we briefly look at different types of graphs. 
 
3.1. Regular Graphs 
A graph G is regular if all vertices of G have the same degree.  A regular graph where all 
vertices have degree k is referred to as a k-regular graph.   
 
 
0-regular:  
 
 
 
1-regular: 
 
 
 
2-regular 
 
 
 
 
Note: The Handshaking Lemma tells us that the total degree of any graph is an even 
number, i.e. twice the number of edges.  Hence, it is impossible to construct a k-regular 
graph where k is odd with an odd number of vertices.  For example, we cannot have a 3-
regular graph with 5 vertices as this would give a degree sum of 15. 

1 2 

3 4 

5 7

6

8 

1

34

5 7 

6 

8 



GraphTheory 5

3.2. Complete Graphs 
The complete graph, denoted Kn, with n vertices, all of which are adjacent to each other, is 
regular. 
 
K1  
 
K2  
 
 
K3  
 
 
 
 
K4  
 
 
 
 
 
 
 
K5  
 
 
 
 
 
 
Note: The complete graph Kn is regular and each of the n vertices has degree n – 1.  Hence, 
the sum of the degrees is n(n – 1).  Hence, by the Handshaking Lemma the number of 

edges in Kn is 
2

)1( −nn
.   
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3.3 Cycle Graph 
A cycle graph, denoted Cn, is a graph on n vertices },,,{ 110 −nvvv K  with n edges 

),(,,),(),,( 012110 vvvvvv n−K .  Note that Cn contains a single cycle through all the 
vertices.  See Section 4 for a definition of a cycle in graph theory terms.  
 
 
 
C1  
 
 
 
C2  
 
 
 
C3  
 
 
 
 
C4  
 
 
 
 
 
 
C5  
 
 
 
 
 
Note: In a cycle graph every vertex has degree 2.  We note here that the graph C1 contains a 
self-loop and we shall see later in the section on multigraphs that a loop contributes two to 
the degree of the vertex.  Hence, the vertex in C1 has degree 2.   
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3.4. Bipartite Graphs 
A bipartite graph, G(V1, V2), is a graph whose vertices can be partitioned into two disjoint 
subsets V1 and V2, where no edge joins vertices that are in the same subset.  A vertex in one 
of the subsets may be joined to all, some, or none of the vertices in the other – see Figures 
below.  In the case where G is simple and every vertex of V1 is joined to V2 then G is called 
a complete bipartite graph and is usually denoted Kr,s where r and s represent the number 
of vertices in V1 and V2 respectively.  A bipartite graph is usually shown with the two 
subsets as top and bottom rows of vertices or with the two subsets as left and right columns 
of vertices. 
 
 
   V1      V1 

 
 
 
 
 
 
   V2      V2 
 
 
The graph on the right is the complete bipartite graph, K2,5 with 5 + 2 = 7 vertices and  
5 μ 2 = 10 edges.  In general, a complete bipartite graph Kr,s has r + s vertices and r μ s 
edges. 
 
 
 
A complete bipartite graph of the form K1,s is called a star graph and K1,4 is shown below. 
 
 
 
 
 
 
 
 
 
A bipartite graph Kr,s is regular if and only if r = s. 
 
 
 
 
 
 
 
 
The above complete bipartite graph, K3,3 is regular as each vertex has degree 3.  
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3.5. Tree Graphs:  
A forest is a graph containing no cycles and a connected forest is called a tree.  Note that a 
graph on n vertices has fewest edges when it is a tree (as it has no cycles) and most edges 
when it is a complete graph.  Below is a forest with four components. 
 
 
 
 
 
 
 
 
 
 
If the four components in the above forest are connected we obtain the tree below. 
 
 
 
 
 
 
 
 
 
 
 
Theorem:  Let T be a graph with n > 1 vertices.  The following statements are equivalent: 
 

(i) T is a tree. 
(ii) T is cycle-free and has n – 1 edges. 
(iii) T is connected and has n – 1 edges. 
(iv) T is connected and contains no cycles.  
(v) T is connected and each edge is a bridge.  
(vi) any two vertices of T are connected by exactly one path.  
(vii) T contains no cycles, but the addition of any new edge creates exactly one cycle.  

 
 
 
Note: From the above theorem it must be the case that a finite tree with n vertices must 
have n – 1 edges.  
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3.6. Multigraphs 
Consider the graph G ={ { A, B, C, D }, { (A,B), (B,C), (B,D), (C,D), (C,D), (D,D) } }. 
shown below  
 
 
 
 
 
 
 
 
 
 
 
 
This is an example of a multigraph.  A multigraph is a graph that allows the existence of 
loops and multiple edges.   
 
A loop is an edge that links a vertex to itself.  In the figure the edge (D, D) is a loop and 
connects vertex D to itself.   
 
If two vertices are joined by more than one edge then these edges are called multiple 
edges.  In the figure the edge (C, D) represents multiple edges.  
 
A simple graph is one that contains no loops or multiple edges. 
 
 
Notes  
1. We define a loop to contribute 2 to the degree of a vertex so that the Handshaking 
Lemma holds for multigraphs.  In the above figure vertex D therefore has degree 5.  The 
degree sum of the graph is 1 + 3 + 3 + 5 = 12 which is twice the number of edges (6) as 
required by the Handshaking Lemma. 
 
2. Some texts do not allow multigraphs to have loops. 
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4. Walks, Trails & Paths 
A walk of length k on a graph G is an alternating sequence of vertices (vi) and edges (ei): 
 

k1-k v,e ., . . evevev ,,,,,, 322110  
 
where vi and vi+1 are both incident to ei+1.  Note that the graph has k + 1 vertices and k 
edges. 
 
The length of a walk is the number of edges in the walk. 
 
For convenience we omit edges and use only vertices so that the walk given above is 
written as kv., . . vvv ,,, 210 .  
 
Example 4: A walk on the graph below is given by: 1, 5, 4, 3, 7, 1, 6 and has length L = 6. 
 
 
 
 
 
 
 
 
 
 
 
A walk can traverse any edge and any vertex any number of times.  
 
A walk is said to be closed if its first and last vertices are the same, i.e. v0 = vk.   
 
Example 5: A closed walk is given by:  1, 5, 4, 3, 7, 1, 6, 5, 1. 
 
 
A trail is a walk where all edges are distinct but vertices may be repeated. 
 
Example 6: A trail is given by:  1, 5, 4, 3, 7, 1, 6, 5. 
 
 
A path is a trail in which all vertices are distinct.  Hence, in a path neither vertices nor 
edges are repeated. 
 
Example 7: A path is given by:  1, 5, 4, 3, 7. 
 
 
Therefore, all trails are walks and all paths are trails. 
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In terms of set theory, Paths Œ Trails Œ Walks as shown below. 
 
 
 
 
 
 
 
 
 
 
 
A circuit is a closed trail.   
 
Example 8: A circuit is given by:  1, 2, 3, 1, 5, 4, 3, 7, 1 is a circuit.  Note that no edges 
are repeated but we are allowed to repeat vertices. 
 
 
A cycle is a closed path 
 
Example 9: A cycle is given by:  1, 2, 3, 4, 5, 1.  Note that no vertices (or edges) are 
repeated.  
 
 
 
 
5. Eulerian and Hamiltonian Graphs  
This section considers special ways of traversing graphs.  Examples of these traversals are  
the Königsberg bridges and Travelling Salesman problems.  
 
5.1. Eulerian Graphs 
Definition: An Euler circuit of a graph, G is a path through G that starts and ends at the 
same vertex and uses each edge exactly once.  Note that we are allowed to use the same 
vertex multiple times, but we can only use each edge once.  A graph is Eulerian if it has an 
Euler circuit. 
 
 
Definition: A Euler trail through a graph, G is an open trail that passes exactly once 
through each edge of G.  We say that G is semi-Eulerian if it has an Euler trail.  Note that 
every Eulerian graph is semi-Eulerian. 
 

Theorem: Let G be a connected graph.  Then G is Eulerian if and only if every vertex of G 
has even degree.   

Corollary: A connected graph is semi-Eulerian if and only if there are 0 or 2 vertices of 
odd degree.  Note that if a semi-Eulerian graph has two vertices of odd degree then any 
Euler trail must have one of them as its initial vertex and the other as its final vertex. 

PATH

TRAIL

WALK
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Example 10: 
 
(i)  
    NON-EULERIAN 
    As there are four vertices of odd degree the graph is  

non-Eulerian. 
 
 
 
(ii)  
    SEMI-EULERIAN 

  By the above corollary as there are two vertices of odd  
  degree (i.e. degree 3) then the graph is semi-Eulerian.   
  Euler trail must start at one of the odd degree vertices  
  and end at the other, e.g. 12342645615 

 
 
 
(iii)    EULERIAN 
    (By the above theorem all vertices have even degree  
    and so the graph is Eulerian). 
    Euler circuit: 1253451 
 
 
 
The table below provides simple rules that count the number of odd degree vertices in a 
graph to decide whether or not it has an Euler circuit or Euler trail. 
 
 

No. of Odd Vertices For a Connected Graph
0 There is at least one Euler circuit. 
1 Not possible 
2 No Euler circuit but at least 1 Euler trail. 

More than 2 No Euler circuits or Euler trails. 
 
 
Theorem: If G is an Eulerian graph then using the following procedure, known as Fleury’s 
Algorithm, it is always possible to construct an Euler circuit of G.   
 
Starting at any vertex of G traverse the edges of G in an arbitrary manner according to the 
following rules: 

(i) erase edges as they are traversed and if any isolated vertices appear erase them. 
(ii) At each step use a bridge only if there is no alternative (see below for a 

definition of ‘bridge’). 
 
 
Note: Since every vertex in the Königsberg graph in Figure 2 has an odd degree it is not 
possible to find an Euler circuit of this graph. It is therefore impossible for someone to walk 
around the city in such a way that each bridge is crossed exactly once and end up at the 
starting point.  
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5.2. Hamiltonian Graphs 
Definition: A circuit (closed trail) which passes exactly once through each vertex of a 
graph G is called a Hamiltonian circuit and G is called a Hamiltonian graph.  Note that 
we do not need to use all the edges.  
 
Definition: A trail that passes exactly once through each vertex of G and is not closed is 
called a Hamiltonian trail.  We say that G is semi-Hamiltonian.  Note that every 
Hamiltonian graph is semi-Hamiltonian. 
 
 
Note that while we have a theorem that provides necessary and sufficient conditions for a 
connected graph to be Eulerian (i.e. ‘G is Eulerian if and only if every vertex of G has even 
degree’) there is no similar characterization for Hamiltonian graphs – this is one of the 
unsolved problems in graph theory.  In general, it is much harder to find a Hamiltonian 
circuit than it is to find an Eulerian circuit.  
 
Example 11 
 
(i)     NON-HAMILTONIAN 
     
 
 
 
 
 
(ii)  
     SEMI-HAMILTONIAN 
     Hamiltonian trail: 2143 
 
 
 
 
(iii)  
     HAMILTONIAN 
     Hamiltonian circuit: 12341 
     Note that we do not need to use all edges. 
 
 
 
 
Note: The Travelling Salesman problem (TSP) searches for the most efficient (least total 
distance) Hamiltonian circuit a salesman can take so that each of n cities is visited.  To 
date, no solution to the TSP has been found.   
 
Note: An Eulerian circuit traverses every edge in a graph exactly once, and may repeat 
vertices.  A Hamiltonian circuit, on the other hand, visits each vertex in a graph exactly 
once but does not need to use every edge.  
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6. Graphs and Adjacency Matrices 
Up to now we have only considered graphs where the number of edges and vertices is 
relatively small so that they can be easily be shown in diagram form.  However, as graphs 
become large it is no longer feasible to display them visually.  When storing a graph on a 
computer it is useful to represent it in matrix form, as the calculation of paths, trails and 
circuits, for example, can easily be performed.  If G is a graph with n vertices its adjacency 
matrix, A is defined as the n × n binary matrix whose ij-th entry is the number of edges 
joining vertex i and vertex j.  In this section we look at how to form the adjacency matrix 
for different types of graph.  
 
6.1. Undirected Graphs 
In Section 2 we defined an undirected graph to be a graph in which the edges have no 
orientation.  Hence, all edges are bidirectional.  For example, in the graph shown in 
Example 12 below the edge (1, 2) is considered identical to the edge (2, 1).   
 
6.1.1 Adjacency Matrix of an Undirected Graph  
The adjacency matrix for an undirected graph is symmetric, i.e. A = AT. 
 
In an undirected multigraph we define a loop to contribute 2 to the degree of a vertex.  This 
approach ensures that the Handshaking Lemma holds for multigraphs. 
 
Example 12 

        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
=

0010
0012
1101
0210

4
3
2
1

4321

A  

 
Solution 
The graph has 4 vertices and so the adjacency matrix will have dimension 4 × 4.  
The entries of the matrix are determined as follows:  
 

• 0 edges connect vertex 1 to vertex 1, so the entry in Row1/Column1 is a ‘0’   
• 1 edge connects vertex 1 to vertex 2, so the entry in Row1/Column2 is a ‘1’   
• 2 edges connect vertex 1 to vertex 3, so the entry in Row1/Column3 is a ‘2’   
• 0 edges connect vertex 1 to vertex 4, so the entry in Row1/Column4 is a ‘0’   

 
• 1 edge connects vertex 2 to vertex 1, so the entry in Row2/Column1 is a ‘1’   
• 0 edges connect vertex 2 to vertex 2, so the entry in Row2/Column2 is a ‘0’   
• 1 edge connects vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’   
• 1 edge connects vertex 2 to vertex 4, so the entry in Row2/Column4 is a ‘1’   

 
• 2 edges connect vertex 3 to vertex 1, so the entry in Row3/Column1 is a ‘2’   
• 1 edge connects vertex 3 to vertex 2, so the entry in Row3/Column2 is a ‘1’   
• 0 edges connect vertex 3 to vertex 3, so the entry in Row3/Column3 is a ‘0’   
• 0 edges connect vertex 3 to vertex 4, so the entry in Row3/Column4 is a ‘0’   

1 

4 3 

2 
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• 0 edges connect vertex 4 to vertex 1, so the entry in Row4/Column1 is a ‘0’   
• 1 edge connects vertex 4 to vertex 2, so the entry in Row4/Column2 is a ‘1’   
• 0 edges connect vertex 4 to vertex 3, so the entry in Row4/Column3 is a ‘0’   
• 0 edges connect vertex 4 to vertex 4, so the entry in Row4/Column4 is a ‘0’   

 
Notes 
1. For the adjacency matrix of an undirected graph we have that: 
 

Sum of Row j = Sum of Column j = Degree of vertex j 
Here,  

Sum of Row 1 = Sum of Column 1 = Degree of vertex 1 = 3 
Sum of Row 2 = Sum of Column 2 = Degree of vertex 2 = 3 
Sum of Row 3 = Sum of Column 3 = Degree of vertex 3 = 3 
Sum of Row 4 = Sum of Column 4 = Degree of vertex 4 = 1 

 
2. The degree sum of the graph is 3 + 3 + 3 + 1 = 10 which is twice the number of edges (5) 
as required by the Handshaking Lemma. 
 
 
 
Example 13: Given an adjacency matrix we can construct the associated graph, G. 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
=

0111
1010
1122
1020

4
3
2
1

4321

A        

 
The matrix has dimension 4 × 4 and so the graph has 4 vertices.  We proceed as follows:  
 

• Entry in Row1/Column1 is a ‘0’so 0 edges connect vertex 1 to vertex 1  
• Entry in Row1/Column2 is a ‘2’so 2 edges connect vertex 1 to vertex 2  
• Entry in Row1/Column3 is a ‘0’so 0 edges connect vertex 1 to vertex 3  
• Entry in Row1/Column4 is a ‘1’so 1 edge connects vertex 1 to vertex 4  

 
• Entry in Row2/Column1 is a ‘2’so 2 edges connect vertex 2 to vertex 1  
• Entry in Row2/Column2 is a ‘2’so vertex 2 has a self-loop   
• Entry in Row2/Column3 is a ‘1’so 1 edge connects vertex 2 to vertex 3  
• Entry in Row2/Column4 is a ‘1’so 1 edge connects vertex 2 to vertex 4  

 
and so on.  
 
Notes   
1. Sum of Row j = Sum of Column j = Degree of vertex j, e.g.  

Sum of Row 2 = Sum of Column 2 = Degree of vertex 2 = 6.   
 
2. The degree sum of the graph is 3 + 6 + 2 + 3 = 14 which is twice the number of edges (7) 
as required by the Handshaking Lemma. 

1 

4 3 

2 
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6.2. Weighted Graphs: The edges in a graph can be weighted or unweighted.  In a 
weighted graph a non-negative real number is assigned to each edge, e, and is called the 
weight of e, denoted w(e).  These weights may correspond to the lengths of roads (edges) 
between towns (vertices) in a graphical representation of a map and we may be required to 
find the length of the shortest path from town A to town L say.  The problem is then to find 
the path from A to L with minimum weight.  An example of a shortest path problem is 
given by the well-known Travelling Salesman Problem. 
 
Example 12: Find the shortest path from A to L.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(from Introduction to Graph Theory, Fourth Edition, Wilson R.J., 1996) 
 
Solution 

• Move across the graph from left to right and associate with each vertex V a number 
l(V) giving the shortest distance from A to V. 

• Let vertex A have label 0. 
• Define temporary labels for B, E, and C as l(A)+3, l(A)+9 and l(A)+2 respectively, 

i.e. temporary labels are 3, 9 and 2. 
• Find the smallest of these.  Set l(C)=2 so that C is now permanently labeled, 2. 
• Consider all vertices adjacent to C. 

Assign F the temporary label, l(C)+9=11 and  
Assign E the temporary label, l(C)+6=8. 
The smallest temporary label is now 3 at B and so set l(B) = 3. 

• Now consider vertices adjacent to B. 
Assign D the temporary label, l(B)+2=5 and  
Assign E the temporary label, l(B)+4=7. 
The smallest temporary label is now at D and so set l(D) = 5. 

• Continue in this way to get permanent labels: l(E) = 7, l(G) = 8, l(H) = 9,  
l(F) = 10, l(I) = 12, l(J) = 13, l(K) = 14 and l(L) = 17. 

• The shortest path from A to L therefore has length 17 and is shown in bold in the 
above figure. 
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6.2.1Adjacency Matrix of a Weighted Graph 
The adjacency matrix is calculated in the same way as for the previous examples except 
that instead of placing a 1 in the ith row and jth column when vertices vi and vj are adjacent 
we enter the weight. 
 
 
Example 14  
 

        

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

06007
60430
04020
03206
70060

A  

 
 
 
6.3. Directed Graphs (Digraphs) 
The figures above are examples of undirected graphs where the direction of an edge is 
undefined and you can move in both directions between vertices. 
 
In a directed graph, or digraph, as shown below, the direction of an edge is defined and 
you can only move between two vertices in that direction.  The graph below is represented 
by  
 

G(V, E) = { {1, 2, 3, 4}, {(1,2), (1,3), (2,3), (3,4), (4,1)} }. 
 
 
 
 
 
 
 
 
 
 
The indegree of a vertex is the number of edges that terminate at that vertex. 
 
The outdegree of a vertex is the number of edges that originate at that vertex. 
 
The edges can be weighted or unweighted as for undirected graphs.   
 
A digraph is Eulerian if the indegree equals the outdegree for each vertex. 
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6.3.1Adjacency Matrix of a Digraph 
• The adjacency matrix of a digraph having n vertices is a n × n binary matrix.   
• For each directed edge (vi, vj), i.e. arrow from vertex vi to vertex vj, we place a ‘1’ at 

the ith row, jth column position.  Otherwise we place a ‘0’ at the appropriate position 
in the matrix.  

 
Example 15  
Determine the adjacency matrix for the digraph shown below,  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
=

0001
1010
0100
0010

4
3
2
1

4321

A  

 
Solution 

• The digraph has 4 vertices and so the adjacency matrix will have dimension 4 × 4  
• There is an edge from vertex 1 to vertex 2, so the entry in Row1/Column1 is a ‘1’   
• There is an edge from vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’   
• There is an edge from vertex 3 to vertex 2, so the entry in Row3/Column2 is a ‘1’   
• There is an edge from vertex 3 to vertex 4, so the entry in Row3/Column4 is a ‘1’   
• There is an edge from vertex 4 to vertex 1, so the entry in Row4/Column1 is a ‘1’   
• All other entries in the adjacency matrix will be zero 

 
 
Outdegree and Indegree 

• In general, the number of 1’s in row i of A correspond to the number of edges 
leaving vertex i, i.e. the outdegree of vertex i.   

• The number of 1’s in column j correspond to the number of edges terminating at 
vertex j, i.e. the indegree of vertex j.   

 
For the diagraph above we can construct the following table:  
 

Vertex Outdegree Indegree
1 1 1 
2 1 2 
3 2 1 
4 1 1 

 
Eulerian Digraphs 
A diagraph is Eulerian if and only if the outdegree of each vertex equals its indegree.  
This diagraph is not Eulerian as, for example the outdegree of vertex 2 is 1 while its 
indegree is 2. 
 
Notes: 

• The total number of 1’s in the adjacency matrix equals the number of edges in the 
graph.   

• In general, the adjacency matrix is not symmetric for a digraph graph. 

1 2

3 4 
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Example 16 
Determine the adjacency matrix for the digraph shown below,  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00001
10010
01000
01100
00010

5
4
3
2
1

54321

A  

 
Solution 

• The digraph has 5 vertices and so the adjacency matrix will have dimension 5 × 5.  
• There is an edge from vertex 1 to vertex 2, so the entry in Row1/Column1 is a ‘1’   
• There is an edge from vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’  

There is an edge from vertex 2 to vertex 4, , so the entry in Row2/Column4 is a ‘1’   
• There is an edge from vertex 3 to vertex 4, , so the entry in Row3/Column4 is a ‘1’   
• There is an edge from vertex 4 to vertex 2, , so the entry in Row4/Column2 is a ‘1’   
• There is an edge from vertex 4 to vertex 5, so the entry in Row4/Column5 is a ‘1’   
• There is an edge from vertex 5 to vertex 1, so the entry in Row5/Column1 is a ‘1’   
• All other entries in the adjacency matrix will be zero. 

 
 
For the diagraph above we can construct the following table:  
 

Vertex Outdegree Indegree
1 1 1 
2 2 2 
3 1 1 
4 2 2 
5 1 1 

 
 
Note: This diagraph is Eulerian as the outdegree of each vertex equals its indegree. 
 
 
Hamiltonian Digraphs 
A digraph D is Hamiltonian if and only if there is a cycle that visits every vertex in the 
digraph exactly once.  (Note: a cycle ends where is started).   

1 2

3

4 5 
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7. Adjacency Matrices & Paths 
In the previous examples the entry at position (i , j) in the adjacency matrix A, corresponds 
to the number of paths of length 1 between vertex vi and vertex vj.  It is also possible to 
construct matrices that provide information on paths of length other than 1 between 
vertices.  For example, to calculate the matrix for paths of length 2 we must calculate  
A2 = A μ A.   
 
In general, ( )( )k

ij
k aA =  where ( )k

ija  is the number of paths of length k from i to j.  Hence, the 

entry at position (i , j) of the matrix kA  indicates the number of paths of length k between 
vertex vi and vertex vj.   
 
 
Example 17:  Let G be a directed graph with 5 vertices as shown: 
 
 
 
 
 
 
 
 
If a path of length 1 exists between two vertices (i.e. vertices are adjacent) then there is a 1 
in the corresponding position in the adjacency matrix, A.  Here, for example, inspection of 
A below reveals the following paths of length 1: 
 

• from vertex 1 to vertices 2, 4 and 5 
• from vertex 2 to vertex 4 
• from vertex 3 to vertex 5 
• from vertex 5 to vertex 2. 

 
Note that there are no paths of length 1 from vertex 4 to any of the other vertices 
 
Combining the above results we construct the adjacency matrix, A, for the digraph G:  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00010
00000
10000
01000
11010

5
4
3
2
1

54321

A .   

 
To calculate paths of length 2 the adjacency matrix, A, is multiplied by itself to get A2 
giving a matrix representation of paths of length 2.   

1 2

3

45 
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In this case we obtain  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01000
00000
00010
00000
01010

5
4
3
2
1

54321

2A .   

 
For example the matrix A2 shows that there are only four paths of length 2  in the digraph, 
i.e.    from vertex 1 to vertex 2,  

from vertex 1 to vertex 4,  
from vertex 3 to vertex 2  
from vertex 5 to vertex 4.  

 
In general, the matrix of path length n is generated by multiplying the matrix of path length 
n – 1 by the matrix of path length 1, i.e. the adjacency matrix, A. 
 
Definition: A digraph is strongly connected if there is a path from every vertex to every 
other vertex. 
 
 
 
8. Isomorphisms between Graphs 
Graphs G and H are said to be isomorphic (essentially the same graph) if there is a one-one 
and onto map, 
 

φ: V(G) → V(H) such that edge AB ∈ E(G) ñ edge φ(A) φ(B) ∈ E(H). 
 

In other words there is a one-one correspondence between the vertices of G and the vertices 
of H with the property that the number of edges joining any two vertices of G is equal to 
the number of edges joining the corresponding vertices of H. 
 
 
Example 18: The graphs G1 and H1 below are isomorphic. 
 
 
 
 
 
 
 
 
 
 
 

H1 

1 

2 3 

4 5

G1 

1 

2 5

3 

4 
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In graph G1: vertex 1 has degree 4 and is joined to vertices 2, 3, 4 and 5. 
In graph G1: vertex 2 has degree 3 and is joined to vertices 1, 3, and 4. 
In graph G1: vertex 3 has degree 3 and is joined to vertices 1, 2, and 5. 
In graph G1: vertex 4 has degree 2 and is joined to vertices 1 and 2. 
In graph G1: vertex 5 has degree 2 and is joined to vertices 1 and 3. 
 
Easily checked that this is the same for graph H1 and so the graphs are isomorphic. 
 
Hence, the adjacency list is the same for both graphs 
 

Vertex Adjacent 
vertices 

1 2, 3, 4, 5 
2 1, 3, 4 
3 1, 2, 5 
4 1, 2 
5 1, 3 

 
 
Example 19: The graphs G2 and H2 below are not isomorphic as they have different degree 
sequences. 
 
 
 
 
 
 
 
 
 
Both graphs have the same number of vertices, i.e. 7.  However, Graph G2 has degree 
sequence (2, 2, 2, 3, 3, 3,3) while Graph G2 has degree sequence (2, 2, 3, 3, 3, 3, 4).  
Alternatively you could show that the two graphs have different adjacency lists.   

H2 G2 
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9. Vertex (Graph) Colouring 
The most well-known graph colouring problem is the Four Colour Problem which was first 
proposed in 1852 when Francis Guthrie noticed that four colours were sufficient to colour a 
map of the counties of England so that no two counties with a border in common had the 
same colour.  Guthrie conjectured that any map, no matter how complicated, could be 
coloured using at most four colours so that adjacent regions (regions sharing a common 
boundary segment, not just a point) are not the same colour.  Despite many attempts at a 
proof it took until 1976 when two American scientists, Appel and Haken, using graph 
theory produced a computer-based proof to what had become known as the Four Colour 
Theorem.   
 
In graph theory terms vertex (graph) colouring problems require the assignment of colours 
(usually represented by integers) to the vertices of the graph so that no two adjacent 
vertices are assigned the same colour (integer). 
 
Definition 
A k-colouring of a graph is a colouring in which only k colours (numbers) are used.  The 
chromatic number for a graph is the minimum number of colours (numbers) required to 
produce a vertex colouring of the graph.   The chromatic number of a graph G is denoted by 

( )Gχ .   
 
Example 20 
A graph with no edges has chromatic number 1 while the complete graph Kn has chromatic 
number n.  In the figures below we assign a ‘1’ to the graph with no edges on the left and 
say that it is 1-colourable while we assign the numbers 1, 2, 3, 4, 5 to the complete graph 
K5 on the right and say that it is 5-colourable.  
 
 
 
 
 
 
 
 
 
 
 
Identifying the chromatic number in the two cases shown above is straightforward.  In 
general, however determining the exact chromatic number of a graph is a hard problem and 
no efficient method exists.  The only approach that would identify the chromatic number of 
a graph G with absolute certainty would involve investigating all possible colourings.  
Clearly as graphs become larger this method becomes impractical, even using the most 
powerful computers that are available.  The best that can be done is to determine lower and 
upper bounds on the chromatic number and techniques such as looking for the largest 
complete subgraph in G (for a lower bound) and the Greedy algorithm (for an upper bound) 
enables us to do so.  The Greedy algorithm however is very inefficient but is adequate for 
‘small’ graphs with the aid of a computer.   
 

1 

1 

2 

3 4 

5 
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TUTORIAL 

1. Sketch the following graphs:  

(i). 4-regular,    (ii). 5-regular,    (iii). K4,  
 

(iv). C6,    (v). K2,3    (vi). K4,4 
 
 
 
2. (i). Which of the following graphs are connected? 
 
 
 
(a).         (b).  
 
 
 
 
 
 
 
 
 
 
 
 
(c).        (d). 
 
 
 
 
 
 
(ii). If a graph is not connected state what its connected components are. 
 
 
(iii). Which are simple graphs and which are multigraphs? 
 
 
 
 
3. Sketch the undirected graph G defined below and construct the adjacency matrix.  
 
G = { V, E } = { { 1, 2, 3,4, 5 }, {(1, 2), (1, 3), (1, 5), (1, 5), (2, 1), (2, 3), (2, 3), (3, 1),  
(3, 2), (3, 2), (3, 4), (3, 5), (4, 3), (4, 5), (5, 1), (5, 1), (5, 3), (5, 4)} }. 

B C 

A D 

E 

A 

C 

B 

D 

E 

B A 

C 
D 

A B 

C 
E 

D

F 
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4. Consider the adjacency matrix  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01001
10011
00011
01100
11100

A  

 
(i). Sketch the associated undirected graph G.  
(ii). Write down the degree sequence for G. 
(iii). Show that the Handshaking Lemma holds for G.  
(iv). Is G Eulerian?  Justify your answer and give an Euler circuit if appropriate.  
(v). Is G Hamiltonian?  Justify your answer and give a Hamiltonian circuit if appropriate.  
(vi). Removal of an edge from G results in a bipartite graph. Identify which edge should be 
removed and sketch the resulting graph.  
(vii). How many edges need to be added to G to obtain a complete graph?  Identify which 
edges need to be added and sketch the resulting graph.  
 
 
5. Given a graph, G, its complementary graph G , obtained from G by replacing edges with 
non-edges and non-edges by edges.  If G is given by: 
 
 
 
 
 
 
 
Sketch its complementary graph, G . 
 
 
6. A graph, G, is k-regular if all vertices have degree k.  Calculate the degree sum for a k-
regular graph with n vertices and the number of edges in G. 
 
 
7. In a simple graph, with at least two vertices, there are at least two vertices of the same 
degree.  This result is not true for multigraphs.  Sketch a three vertex multigraph with all 
vertices of different degree. 
 
 
8. Consider the graph, G below.  Explain why G does not have a Hamiltonian circuit. 
 
 
 
 
 
 

P Q R 

S T U 

V W X 
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9. Define the term Hamiltonian cycle (circuit) and sketch a Hamiltonian graph.   
 
 
10. Define the term Euler circuit and sketch an Eulerian graph.   
 
 
11. Consider the graph below,  
  
 
 
 
 
 
 
(i). Is the graph Eulerian?  If so give an Euler circuit of G.   
 
(ii). Is the graph Hamiltonian?  If so give a Hamiltonian circuit of G.   
 
 
12. Sketch a simple graph G whose vertices all have even degree but G is not Eulerian.  
 
13. Consider the graph G below,  
 
 
 
 
 
 
 
(i). Is G Eulerian? If so give an Euler circuit of G.   
 
(ii). Is G Hamiltonian? If so give a Hamiltionian circuit of G.   
 
14. Determine whether the complete graphs K77 and K32 are Eulerian. 
 
 
15. Determine the adjacency matrix for the graph shown below,  
 
 
 
 
 
 
 
 
 
 

P Q

R 

S T 

U 

P Q 

R S 

T U 

V 

P 

R 

Q 

S 

e1 

e2 

e3 

e4 

e5 

e6 

e7 
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16. The adjacency matrix for a graph, G is given by   
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0113
1021
1201
3112

A .  

 
Without drawing G, and using only the matrix A, answer the following: 
 
(i) How many edges does G have?  
 
(ii) How many paths of length 2 join vertices A and D.  
 
 
17. How many edges does a tree, T, with 5000 vertices have? 
 
 
18. Determine which bipartite graphs, nmK ,  are trees. 
 
 
19. Determine the conditions on r and s that will guarantee that the complete bipartite 
graph, Kr,s will have an Euler circuit. 
 
 
20. Explaining your answer state whether a graph on 7 vertices can have each vertex of  
degree 5.   
 
 
21. Consider a graph G on 12 vertices where each vertex has degree 7.  How many edges 
does G have?  Explain your answer. 
 
 
22. (i) Sketch the digraph D = { {1, 2, 3, 4}, (1,2), (1,4), (2,3), (2,4), (3,2), (3,4), (4,1) }. 
 
 
(ii) Determine the adjacency matrix for D. 
 

(iii) If the adjacency matrix A satisfies, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1010
1101
1011
1101

2A  calculate A3 and explain the  

 
meaning of the entry at position (1, 2) in A3.   
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23. Consider the following adjacency matrix, A, for a directed graph, G  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00101
00110
11010
10001
01000

A .  

 
Without drawing G, and using only the matrix A answer the following: 
 
(i) Calculate the indegree and outdegree of each vertex. 
 
(ii) Determine whether G is Eulerian.  Explain your answer. 
 
(iii) How many edges does G have?  Explain your answer. 
 
 
24. State the Handshaking Lemma for directed graphs, explaining your answer. 
 
 
25. Determine the adjacency matrix for the digraph below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26. Consider the following adjacency matrix  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01010
00000
10001
01000
10010

A .   

 
(i). Sketch the associated digraph. 
 
(ii). Determine whether the digraph is Eulerian and state an Euler circuit if one exists.   

P 

R 

Q 

S 

e1 

e2 

e3 

e4 

e5 

e6 

e7 
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27. Determine whether the two graphs below are isomorphic. 
 
 
 
 
 
 
 
 
 
 
 
28.(i). In a cycle graph nC  state how the number of vertices is related to the number of 
edges.   
 
(ii). Sketch the cycle graphs 5C  and 6C .  
 
(iii). What is the chromatic number of a cycle graph, nC ? 
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Solutions 
 
 
1.(i).     (ii).  
 
 
 
 
 
 
 
 
 
 
 
(iii).      (iv).  
 
 
 
 
 
 
 
 
 
 
 
(v).       (vi).  
 
 
 
 
 
 
 
 
2. (i). Graphs (b) and (c) are connected as there is a path between any two of their vertices. 
 
(ii). Graph (a) is disconnected and its disconnected components are {ABCD} and {EF}. 
Graph (d) is disconnected and its disconnected components are {ABE} and {CD} 
 
(iii). Graphs (a) and (b) are simple graphs. 
Graph (c) is a multigraph with multiple edges (BC) and (BC). 
Graph (d) is a multigraph with multiple edges (CD) and (CD) and a self-loop (BB). 
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3.          

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01102
01100
11021
00201
20110

A  

 
 
 
 
4. (i).  
 
 
 
 
 
 
 
 
 
 
 
(ii). degree sequence, (2, 2, 2, 3, 3)  
 

(iii). By the Handshaking Lemma ( )GEv
n

j
j 2)deg(

1
=∑

=

 where ( )GE  is the number of 

edges in G.  We therefore have 1233222)deg(
5

1
=++++=∑

=j
jv  and ( ) 12622 =×=GE .  

Hence, the Handshaking Lemma holds for G.  
 
(iv). G is not Eulerian as not all the vertices have even degree.  
 
(v). Removal of edge (4, 5) results in the bipartite graph below. 
 
 
 
 
 
 
 
 
 

1 

2 

3 

5 

4 

1 

2 

3 

5 

4 

1 

2 

3 

4 

5 



GraphTheory 32

(vi). Adding the four edges (1, 2), (2, 5). (3, 4), (3, 5) results in the complete graph K5.  
 
 
 
 
 
 
 
 
 
 
 
 
5. The complementary graph, G  is  
 
 
 
 
 
 
 
6. The regular graph G has n vertices all of degree k and so the sum of all the degrees is nk. 

By the Handshaking Lemma ( )GEv
n

j
j 2)deg(

1

=∑
=

 where ( )GE  is the number of edges in 

G.  We therefore have ( ) ( )
2

2 nkGEGEkn =⇒= .  

 
 
7. In the graph below; deg(P) = 4, deg(Q) = 5, deg(R) = 3 
 
 
 
 
 
 
 
 
 
 
8. A Hamiltonian circuit visits each vertex exactly once and returns to the starting vertex.  
Note that G consists of two subgraphs PUV and QRST connected by a bridge WX.  If we 
start on the left-hand-side (PUV) we must cross the bridge (WX) in order to visit every 
vertex on the right-hand-side but to get back to our starting vertex we must cross the bridge 
again thereby visiting the vertices X and W for a second time.  Therefore G does not have a 
Hamiltonian circuit.  
 
Note: No graph with a bridge has a Hamiltonian circuit. 
 

2 

3 

5 

4 

1 

P 

Q 

R 
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9. A Hamiltonian circuit visits each vertex exactly once and returns to the starting vertex.    
The graph below is Hamiltonian and a Hamiltonian circuit is: ABCDA.  Note that we do not 
need to use all edges. 
      
 
 
 
 
 
 
 
 
10. An Euler circuit is a path through a connected graph which starts and ends at the same 
vertex and travels along every edge of the graph exactly once.  The graph below is Eulerian 
and an Euler circuit is: ABCDA. 
 
 
 
 
 
 
 
 
 
11. (i). The graph is not Eulerian as it contains vertices of odd degree, i.e. vertices P, S and 
T all have degree 3. 
 
(ii). The graph is Hamiltonian and a Hamiltonian circuit is, PTUVSRQP.  
 
 
12. For example, the graph below has every vertex of n degree 2 but it is not Eulerian as it 
is disconnected.   
 
 
 
 
 
 
 
13. (i). Eulerian: Yes as all vertices have even degree.  Euler circuit: PSRQSTUPTQP. 
(ii). Hamiltonian: Yes.  Hamiltonian circuit: PQRSTUP. 
 
 
 
 
 
 
 
14. The graph K77 is 76-regular and all vertices therefore have even degree so that, by 
Euler’s theorem, K77 is Eulerian. 

P Q

R 

S T 

U 

A B 

C D 

A B 

C D 
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The graph K32 is 31-regular and all vertices therefore have odd degree so that K32 is not 
Eulerian. 
 
 

15 (i). 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0112
1020
1201
2010

A     (ii)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1011100
0100110
0110011
1001001

M  

 
 
 

16 (i). Number of edges in G = ( ) ( )
( )
∑
∈

=
GVX

XGE deg
2
1  1020

2
1 =×= .  

 
(ii) For the number of paths of length 2 joining vertices A and D we must calculate 2A .   
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

11558
5627
5267
87715

0113
1021
1201
3112

0113
1021
1201
3112

2A  

 
There are 8 paths of length 2 joining vertices A and D 
 
 
17. Note that T is a tree so that, by definition, T is cycle-free and has n – 1 edges.   
As |V| = 5000 then |E| = 5000 – 1 = 4999 
 
 
18. If m = 1 and/or n = 1 then nmK ,  is a tree. 
 
 
19. If r and s are both even the complete bipartite graph, Kr,s will have an Euler circuit as 
each vertex will have even degree. 
 
 
20. By the Handshaking Lemma this is not possible as the sum of the degrees of the 
vertices, i.e. 3557 =× , which is odd.   
 
 
21. By the Handshaking Lemma the degree sum is twice the number of edges.  Hence, 
since degree sum = 84712 =×  we have that 2E = 84 and so the number of edges E = 42.  
 



GraphTheory 35

22. (i).  
 
 
 
 
 
 
 
 
 

(ii). 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0001
1010
1100
1010

A      (iii).  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1101
2021
2111
2021

3A   

 
The entry at position (1, 2) in A3 indicates that there are exactly two paths of length 3 from 
vertex 1 to vertex 2, i.e. 1412 and 1232.   
 
 
 
23. (i). Label the rows and columns of the matrix, P, Q, R, S, T from top to bottom and P, 
Q, R, S, T  from left to right. The sum of the entries in row j corresponds to the outdegree of 
vertex j. 
The sum of the entries in column j corresponds to the indegree of vertex j. 
 

 P Q R S T 
Outdegree 1 2 3 2 2 
Indegree 2 2 2 2 2 

 
(ii). No, G is not Eulerian as the indegree does not equal the outdegree for each vertex. 
 
(iii). The graph G has 10 edges as each 1 in the adjacency matrix corresponds to an edge.  
 
 
24. For directed graphs the Handshaking Lemma states that the sum of the indegrees is 
equal to the sum of the outdegrees and the combined total is equal to number of edges.  
This is because every edge counts exactly once to the outdegree total and exactly once to 
the indegree total.   
 
 
 

25.(i). 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0001
1010
1100
1010

A    

1 

3 

2 

4 
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26. (i).  
 
 
 
 
 
 
 
 
 
(ii) No, G is not Eulerian as the indegree does not equal the outdegree for each vertex.  We 
can determine this from the adjacency matrix.  
 
 
27. The graphs are isomorphic under the correspondence shown. 

 
 
 
 
 
 
 
 
 
The adjacency list is the same for both graphs 
 

α β, δ 
β α, γ, ε 
γ β, φ, θ 
φ γ, θ 
θ ε, γ, φ 
ε δ, θ, β 
δ α, ε 

 

28(i). The number of vertices in nC  equals the number of edges, and every vertex has 
degree 2.  

(ii). The cycle graphs 5C  and 6C  are shown below.  

 

   

 

 

(iii). The chromatic number of a cycle graph, nC , is 2 if n is even and 3 if n is odd.  

D 

E 

A B 

C 

a b 

f q 
g

d e 

a b 

f 

q

g

d e 


