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GRAPH THEORY

1. Introduction

In recent years graph theory has become established as an important area of mathematics
and computer science. The origins of graph theory can be traced back to Swiss
mathematician Euler and his work on the Kdnigsberg bridges problem (1735), shown
schematically in Figure 1.

Figure 1: Bridges of Konigsberg

Konigsberg was a city in Germany (it is now called Kaliningrad and is in western Russia)
and theriver Pregel, with an island in the middle, ran through it. Seven bridges were built
so that the city’ sinhabitants could travel between the four parts of the city; P, O, Rand Sin
Figure 1. The people wondered whether or not it was possible to walk around the city in
such away that each bridge was crossed exactly once, ending up at the starting point.
However, all attemptsto do so, including Euler’s, ended in failure. Euler reasoned that
anyone standing on land would have to have away to get on and off. Therefore each land
mass would need an even number of bridges, or if the journey started at one land mass and
ended at another, then only those two land masses could have an odd number of bridges.
However, in Konigsberg each land mass had an odd number of bridges explaining why all
seven bridges could not be crossed without crossing one more than once. In formulating
his solution Euler ssmplified the bridge problem by representing each land mass as a point
and each bridge as aline as shown in Figure 2, leading to the introduction of graph theory
and the concept of an Eulerian graph.

Another two well known examples from graph theory are:

1. How many colours do we need to colour a map so that every pair of countries with a
border in common have different colours?

2. Given amap of severa cities and the roads between them, isit possible for a
travelling salesman to visit (pass through) each of the cities exactly once?

Some of the applications of graph theory include: communication network design, GPS to
find the shortest path between two points, design of electrical circuits and modelling of the
Worldwide Web.
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2. Definitions

The Konigsberg Bridge problem can be represented diagramatically by means of a set of
pointsand lines. The points P, O, R and S are called vertices, the lines are called edges (or
ar cs) and the whole diagram is called a graph.

P

Figure 2: Graph theory representation of the Kénigsberg bridge problem

A graph, G, isamathematical structure which consists of:

(). aset V= V(G) whose elements are called vertices, points or nodes of G.
(if). aset E = E(G) of unordered pairs of distinct vertices called edges of G.

Such agraphisdenoted G ={ V(G), E(G)} or G={ V,E }.

Example 1

Figure 3: Graph with 4 vertices and 4 edges
The set IV consists of the vertices, 1,2, 3and 4,i.e. V(G) ={ 1, 2,34}
The set E consists of theedges, e = (1, 2), f=(2,4),g=(3,4) and = = (2, 3),
i.e E(G)={(1,2),(24,(3,4),(2,3)}.
Hence, G={ M(G), E(G)} ={{1,2,3,4},{(1, 2), (2,4),(3,4),(2,3)} }.
Anundirected graph isagraph in which the edges have no orientation. Hence, in an

undirected graph the edge set is composed of unordered vertex pairs. In Fig. 3 for example,
the edge (1, 2) is considered identical to the edge (2, 1).
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If Xand Y are vertices of agraph, G, then X'and Y are said to be adjacent if they are joined
by an edge.
InFig. 3, 1 and 2 are adjacent, 2 and 4 are adjacent but 1 and 4 are not adjacent.

An edgein agraph that joins two verticesis said to be incident to both vertices.
In Fig. 3, edge e isincident to verticesl and 2, / isincident to vertices 2 and 3.

In Fig. 3, 1 and 2 are called the endpoints of ¢ and e is said to connect 1 and 2.

The order of agraph, denoted | V(G) |, isthe number of vertices contained in G.

InFig. 3, | "(G) | = 4.

The size of agraph, denoted | £(G) |, isthe number of edges contained in G.

InFig. 3, | E(G) | = 4.

The degr ee of avertex X, written deg(X), isthe number of edges to which X isincident.
InFig. 3 deg(l)) =1, deg(2)=3, deg(3 =2, deg(4)=2

Any vertex of degree zero is called an isolated vertex and a vertex of degree oneisan end-
vertex.

A vertex is said to be even or odd according to whether its degree is an even or odd
number. In Fig.3 vertices 1 and 2 are odd while vertices 3 and 4 are even.

If the degrees of all the verticesin agraph, G, are summed then the result is an even
number. Furthermore, this degreeis actually twice the number of edges, as each edge
contributes 2 to the total sum. We have the following lemma:

L emma (Handshaking L emma)
In any graph the sum of the vertex degreesis equal to twice the number of edges, i.e.

> deg(X)=2E(G)

XeV (G)

Proof: Inagraph G an arbitrary edge, XY, say, contributes 1 to deg(X) and 1 to deg(Y).
Hence the degree sum for the graph is even.

Note: A corollary of the Handshaking Lemma states that the number of odd verticesin a
graph must be even.

The degr ee sequence of an undirected graph G is a bracketed list of the degrees of all the

vertices written in non-decreasing order.
The degree sequence of the graph in Fig. 3 s, (1, 2, 2, 3).
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A vertex isa cut-point if removal of the vertex disconnects the graph.

Example 2: In graph below vertex 2 is acut-point asits removal disconnects the graph.
The resulting graph has two connected components.

6
7 5 I>7
4 3 8

Anedgeisabridge (or isthmus) if removal of the edge disconnects the graph.

Example 3: Edge (2, 6) isabridge as its removal disconnects the graph.

3.Graph Structures
In this section we briefly look at different types of graphs.

3.1. Reqular Graphs
A graph G isregular if al vertices of G have the same degree. A regular graph where al
vertices have degree k isreferred to as a k-regular graph.

O-regular: [

1-regular: o—©

- AL

Note: The Handshaking Lemmatells us that the total degree of any graph is an even
number, i.e. twice the number of edges. Hence, it isimpossible to construct a k-regular
graph where k is odd with an odd number of vertices. For example, we cannot have a 3-
regular graph with 5 vertices as this would give a degree sum of 15.
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3.2. Complete Graphs
The complete graph, denoted K,,, with n vertices, all of which are adjacent to each other, is
regular.

K [

K>

o—9©
) &
; @
Note: The complete graph K, is regular and each of the n vertices has degreen — 1. Hence,

the sum of the degreesisn(n —1). Hence, by the Handshaking Lemma the number of
n(n-1

edgesin K, is
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3.3 Cycle Graph
A cycle graph, denoted C,, isagraph on n vertices { v,, v, ..., v, ,} with n edges

Vo, ) (v, vy), ..., (v, 4, v,). Notethat C, contains asingle cycle through all the
vertices. See Section 4 for adefinition of acycle in graph theory terms.

O

(@)

-\
[
a0

Note: In acycle graph every vertex has degree 2. We note here that the graph C; contains a
self-loop and we shall see later in the section on multigraphs that aloop contributes two to
the degree of the vertex. Hence, the vertex in C; has degree 2.
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3.4. Bipartite Graphs

A bipartitegraph, G(V1, V>), isagraph whose vertices can be partitioned into two digjoint
subsets V1 and V», where no edge joins vertices that are in the same subset. A vertex in one
of the subsets may be joined to all, some, or none of the vertices in the other — see Figures
below. Inthe case where G is simple and every vertex of V3 isjoined to V> then G is called
acomplete bipartite graph and is usualy denoted K,,; where » and s represent the number
of verticesin V3 and 1, respectively. A bipartite graph is usually shown with the two
subsets as top and bottom rows of vertices or with the two subsets as |eft and right columns
of vertices.

/>V1%\ .Z E % 2 X
V2 V2
The graph on the right is the complete bipartite graph, K> s with 5+ 2 = 7 vertices and

5x 2=10edges. Ingeneral, acomplete bipartite graph K, ; hasr» + s verticesand » X s
edges.

A complete bipartite graph of the form K ; is called astar graph and K 4 is shown below.

A bipartite graph K. isregular if and only if » =s.

The above complete bipartite graph, K33 isregular as each vertex has degree 3.
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3.5. Tree Graphs:

A forest isagraph containing no cycles and a connected forest is called atree. Notethat a
graph on » vertices has fewest edgeswhen it isatree (asit has no cycles) and most edges
when it isacomplete graph. Below isaforest with four components.

Ao e

If the four components in the above forest are connected we obtain the tree below.

)\/-/I‘\’/W

Theorem: Let T'be agraph with n > 1 vertices. The following statements are equivalent:

() Tisatree.

(i) T'iscycle-free and hasn — 1 edges.

(iii) Tis connected and has n — 1 edges.

(iv) T'is connected and contains no cycles.

(v) Tisconnected and each edgeisabridge.

(vi) any two vertices of T are connected by exactly one path.

(vii) T contains no cycles, but the addition of any new edge creates exactly one cycle.

Note: From the above theorem it must be the case that afinite tree with » vertices must
have n — 1 edges.
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3.6. Multigraphs
Consider thegraph G ={ { 4, B, C,D},{ (4,B), (B,O), (B,D), (C,D), (C,D), (D,D) } }.
shown below

C

Thisis an example of amultigraph. A multigraph is agraph that allows the existence of
loops and multiple edges.

A loop isan edge that links avertex to itself. In the figure the edge (D, D) isaloop and
connects vertex D to itself.

If two vertices are joined by more than one edge then these edges are called multiple
edges. Inthefigurethe edge (C, D) represents multiple edges.

A simple graph is one that contains no loops or multiple edges.

Notes

1. We define aloop to contribute 2 to the degree of a vertex so that the Handshaking
Lemma holds for multigraphs. In the above figure vertex D therefore has degree 5. The
degree sum of thegraphis1 + 3 + 3+ 5= 12 which is twice the number of edges (6) as
required by the Handshaking Lemma.

2. Some texts do not allow multigraphs to have loops.
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4. Walks, Trails & Paths
A walk of length £ on agraph G is an alternating sequence of vertices (v;) and edges (e)):

V1€, V1165, V5,63, ...,€, ,,V,

where v; and v;;; are both incident to e;1. Note that the graph has £ + 1 verticesand &
edges.

The length of awalk isthe number of edgesin the walk.

For convenience we omit edges and use only vertices so that the walk given aboveis
written as vy, vy, v,,..., v, .

Example 4: A walk on the graph below isgivenby: 1, 5, 4, 3, 7, 1, 6 and has length L = 6.

6

4 3
A walk can traverse any edge and any vertex any number of times.
A walk issaid to be closed if itsfirst and last vertices are the same, i.e. vo = .

Example 5: A closed walk is given by: 1,543,7,1,6,5, 1

A trail isawak where all edges are distinct but vertices may be repeated.

Example 6: A trail isgiven by: 1,54,37,1,6,5.

A path isatrail inwhich all vertices are distinct. Hence, in a path neither vertices nor
edges are repeated.

Example 7: A path isgiven by: 1,54,37.

Therefore, al trailsare walks and al paths are trails.
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In terms of set theory, Paths C Trails ¢ Walks as shown below.

WALK
TRAIL

A circuit isaclosed trail.

Example8: A circuitisgivenby:  1,2,3,1,5,4, 3,7, Lisacircuit. Notethat no edges
are repeated but we are allowed to repeat vertices.

A cycleisaclosed path

Example 9: A cycleisgiven by: 1,2, 34,5, 1. Notethat no vertices (or edges) are
repeated.

5. Eulerian and Hamiltonian Graphs
This section considers special ways of traversing graphs. Examples of these traversals are
the Konigsberg bridges and Travelling Salesman problems.

5.1. Eulerian Graphs

Definition: An Euler circuit of agraph, G isa path through G that starts and ends at the
same vertex and uses each edge exactly once. Note that we are allowed to use the same
vertex multiple times, but we can only use each edge once. A graphisEulerian if it hasan
Euler circuit.

Definition: A Euler trail through agraph, G isan open trail that passes exactly once
through each edge of G. We say that G is semi-Eulerian if it has an Euler trail. Note that
every Eulerian graph is semi-Eulerian.

Theorem: Let G be aconnected graph. Then G isEulerian if and only if every vertex of G
has even degree.
Corollary: A connected graph is semi-Eulerian if and only if there are O or 2 vertices of

odd degree. Note that if a semi-Eulerian graph has two vertices of odd degree then any
Euler trail must have one of them asitsinitial vertex and the other asits final vertex.
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Example 10:

(1) 2
NON-EULERIAN
Asthere are four vertices of odd degree the graph is
non-Eulerian.
4 3
(i)

2 SEMI-EULERIAN
v By the above corollary asthere are two vertices of odd
3 degree (i.e. degree 3) then the graph is semi-Eulerian.
A Euler trail must start at one of the odd degree vertices
. f and end at the other, e.g. 12342645615

(iii) 1 2 EULERIAN
(By the above theorem all vertices have even degree
5 and so the graph is Eulerian).
Euler circuit: 1253451

The table below provides ssimple rules that count the number of odd degree verticesina
graph to decide whether or not it has an Euler circuit or Euler trail.

No. of Odd Vertices | For a Connected Graph
0 Thereis at least one Euler circuit.
1 Not possible
2 No Euler circuit but at least 1 Euler trail.
More than 2 No Euler circuits or Euler trails.

Theorem: If G isan Eulerian graph then using the following procedure, known as Fleury’s
Algorithm, it isalways possible to construct an Euler circuit of G.

Starting at any vertex of G traverse the edges of G in an arbitrary manner according to the
following rules:
() erase edges as they are traversed and if any isolated vertices appear erase them.
(i)  Ateachstepuseabridgeonly if thereis no alternative (see below for a
definition of ‘bridge’).

Note: Since every vertex in the Konigsberg graph in Figure 2 has an odd degree it is not
possible to find an Euler circuit of this graph. It is therefore impossible for someone to walk
around the city in such away that each bridge is crossed exactly once and end up at the
starting point.

GraphTheory 12



5.2. Hamiltonian Graphs

Definition: A circuit (closed trail) which passes exactly once through each vertex of a
graph G iscalled aHamiltonian circuit and G is called aHamiltonian graph. Note that
we do not need to use all the edges.

Definition: A trail that passes exactly once through each vertex of G and isnot closed is
called aHamiltonian trail. We say that G is semi-Hamiltonian. Note that every
Hamiltonian graph is semi-Hamiltonian.

Note that while we have a theorem that provides necessary and sufficient conditions for a
connected graph to be Eulerian (i.e. * G isEulerian if and only if every vertex of G has even
degree’) thereis no similar characterization for Hamiltonian graphs — thisis one of the
unsolved problems in graph theory. In general, it is much harder to find a Hamiltonian
circuit than it isto find an Eulerian circuit.

Example 11
i ! NON-HAMILTONIAN
2
4 3
(i) 1 2
SEMI-HAMILTONIAN
Hamiltonian trail: 2143
4 3
(i) 4
HAMILTONIAN
Hamiltonian circuit: 12341
Note that we do not need to use al edges.
4 3

Note: The Travelling Salesman problem (TSP) searches for the most efficient (least total
distance) Hamiltonian circuit a salesman can take so that each of « citiesisvisited. To
date, no solution to the TSP has been found.

Note: An Eulerian circuit traverses every edge in agraph exactly once, and may repeat

vertices. A Hamiltonian circuit, on the other hand, visits each vertex in a graph exactly
once but does not need to use every edge.
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6. Graphs and Adjacency Matrices

Up to now we have only considered graphs where the number of edges and verticesis
relatively small so that they can be easily be shown in diagram form. However, as graphs
become large it is no longer feasible to display them visually. When storing agraph on a
computer it isuseful to represent it in matrix form, as the calculation of paths, trails and
circuits, for example, can easily be performed. If G isagraph with » verticesits adjacency
matrix, 4 is defined asthe n x n binary matrix whose ij-th entry is the number of edges
joining vertex i and vertex ;. In this section we look at how to form the adjacency matrix
for different types of graph.

6.1. Undirected Graphs

In Section 2 we defined an undirected graph to be a graph in which the edges have no
orientation. Hence, all edges are bidirectional. For example, in the graph shownin
Example 12 below the edge (1, 2) is considered identical to the edge (2, 1).

6.1.1 Adjacency Matrix of an Undirected Graph
The adjacency matrix for an undirected graph is symmetric, i.e. 4 = A”.

In an undirected multigraph we define aloop to contribute 2 to the degree of avertex. This
approach ensures that the Handshaking Lemma holds for multigraphs.

Example 12
1 ) 12 3 4
R 10 1 2 0O
g 4=21011
312100
3 4 40 1 00
Solution

The graph has 4 vertices and so the adjacency matrix will have dimension 4 x 4.
The entries of the matrix are determined as follows:

0 edges connect vertex 1 to vertex 1, so the entry in Rowl/Columnlisa‘(Q’
1 edge connects vertex 1 to vertex 2, so the entry in Rowl/Column2isa‘l’
2 edges connect vertex 1 to vertex 3, so the entry in Row1l/Column3isa‘?’
0 edges connect vertex 1 to vertex 4, so the entry in Rowl/Columnd isa‘0’

1 edge connects vertex 2 to vertex 1, so the entry in Row2/Columnlisa‘l
0 edges connect vertex 2 to vertex 2, so the entry in Row2/Column2isa‘0’
1 edge connects vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’
1 edge connects vertex 2 to vertex 4, so the entry in Row2/Columndisa‘l’

2 edges connect vertex 3 to vertex 1, so the entry in Row3/Columnlisa‘?’
1 edge connects vertex 3 to vertex 2, so the entry in Row3/Column2isa‘l’
0 edges connect vertex 3 to vertex 3, so the entry in Row3/Column3isa‘0’
0 edges connect vertex 3 to vertex 4, so the entry in Row3/Column4 isa ‘0’
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0 edges connect vertex 4 to vertex 1, so the entry in Row4/Columnlisa‘(Q’
1 edge connects vertex 4 to vertex 2, so the entry in Row4/Column2isa‘l’
0 edges connect vertex 4 to vertex 3, so the entry in Row4/Column3isa‘0’
0 edges connect vertex 4 to vertex 4, so the entry in Row4/Columnd isa ‘0’

p
B

ot
1. For the adjacency matrix of an undirected graph we have that:

Sum of Row j = Sum of Column; = Degree of vertex ;
Here,
Sum of Row 1 = Sum of Column 1 = Degree of vertex 1 =3
Sum of Row 2 = Sum of Column 2 = Degree of vertex 2= 3
Sum of Row 3 = Sum of Column 3 = Degree of vertex 3=3
Sum of Row 4 = Sum of Column 4 = Degree of vertex 4=1

2. The degree sum of the graph is 3 + 3 + 3 + 1 = 10 which is twice the number of edges (5)
asrequired by the Handshaking Lemma.

Example 13: Given an adjacency matrix we can construct the associated graph, G.

12 3 4
10 2 0 1 . 1

Ad=2|2 211 g
310 1 01
41 1 1 0 3 4

The matrix has dimension 4 x 4 and so the graph has 4 vertices. We proceed as follows:

Entry in Row1/Columnl isa ‘0 so 0 edges connect vertex 1 to vertex 1
Entry in Row1/Column2 isa ‘2 so 2 edges connect vertex 1 to vertex 2
Entry in Rowl/Column3isa ‘0’ so 0 edges connect vertex 1 to vertex 3
Entry in Rowl/Column4 isa ‘1’ so 1 edge connects vertex 1 to vertex 4

Entry in Row2/Columnlisa‘2’'so 2 edges connect vertex 2 to vertex 1
Entry in Row2/Column2 isa ‘2 so vertex 2 has a self-loop

Entry in Row2/Column3isa ‘1’ so 1 edge connects vertex 2 to vertex 3
Entry in Row2/Column4 isa‘1'so 1 edge connects vertex 2 to vertex 4

and so on.

=z

otes
1. Sum of Row j = Sum of Column j = Degree of vertex j, e.g.
Sum of Row 2 = Sum of Column 2 = Degree of vertex 2 = 6.

2. The degree sum of the graph is3 + 6 + 2 + 3 = 14 which is twice the number of edges (7)
asrequired by the Handshaking Lemma.
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6.2. Weighted Graphs: The edgesin a graph can be weighted or unweighted. Ina
weighted graph a non-negative real number is assigned to each edge, e, and is called the
weight of e, denoted w(e). These weights may correspond to the lengths of roads (edges)
between towns (vertices) in a graphical representation of a map and we may be required to
find the length of the shortest path from town A to town L say. The problem isthen to find
the path from 4 to L with minimum weight. An example of a shortest path problemis
given by the well-known Travelling Salesman Problem.

Example 12: Find the shortest path from A4 to L.

~®

C 9 F 2
(from Introduction to Graph Theory, Fourth Edition, Wilson R.J., 1996)

Solution

e Move across the graph from left to right and associate with each vertex 7 a number
[(V) giving the shortest distance from 4 to V.

e Letvertex 4 havelabel 0.

e Definetemporary labelsfor B, E, and C as(A4)+3, [(4)+9 and /(4)+2 respectively,
i.e. temporary labelsare 3, 9 and 2.

e Find the smallest of these. Set /(C)=2 so that C is now permanently labeled, 2.

e Consider al vertices adjacent to C.
Assign F the temporary label, /(C)+9=11 and
Assign E the temporary label, /(C)+6=8.
The smallest temporary label isnow 3 at B and so set /(B) = 3.

e Now consider vertices adjacent to B.
Assign D the temporary label, I[(B)+2=5 and
Assign E the temporary label, /(B)+4=7.
The smallest temporary label isnow at D and so set /(D) = 5.

e Continuein thisway to get permanent labels: /(E) =7, I[(G) =8, I(H) =9,
I(F)=10, (1) =12,1(J) =13, [(K) =14 and /(L) = 17.

e The shortest path from A4 to L therefore has length 17 and is shown in bold in the
above figure.
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6.2.1Adjacency Matrix of a Weighted Graph

The adjacency matrix is calculated in the same way as for the previous examples except
that instead of placing a 1 in the i row and /™ column when vertices v; and v; are adjacent
we enter the weight.

Example 14

b 6 0 0 6 0 0 7]
6 0230

! R 4=|0 2 0 4 0

T 6S4 03406
7 00 6 0]

6.3. Directed Graphs (Digraphs)
The figures above are examples of undirected graphs where the direction of an edge is
undefined and you can move in both directions between vertices.

In adirected graph, or digraph, as shown below, the direction of an edge is defined and
you can only move between two vertices in that direction. The graph below is represented

by
G(V,E) ={{1,2,3,4,{(12), (1,3), (2,3), (34), (4,1)} }.

g

The indegr ee of avertex isthe number of edges that terminate at that vertex.
The outdegr ee of avertex isthe number of edges that originate at that vertex.
The edges can be weighted or unweighted as for undirected graphs.

A digraphis Eulerian if the indegree equals the outdegree for each vertex.

GraphTheory 17



6.3.1Adjacency Matrix of a Digraph
e The adjacency matrix of adigraph having n verticesisan x n binary matrix.
e For each directed edge (v;, v)), i.e. arrow from vertex v; to vertex v;, weplacea‘l’ at
the i row, /™ column position. Otherwise we placea ‘0’ at the appropriate position

in the matrix.
Example 15
Determine the adjacency matrix for the digraph shown below,
12 3 4
log— >@ 2
110 1 00
A=2/0 0 1 O
3]0 1 01
P 4112 0 0 O
4 3

Solution

e Thedigraph has 4 vertices and so the adjacency matrix will have dimension 4 x 4
Thereis an edge from vertex 1 to vertex 2, so the entry in Rowl/Columnlisa‘l’
Thereis an edge from vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’
Thereis an edge from vertex 3 to vertex 2, so the entry in Row3/Column2isa‘l’
Thereis an edge from vertex 3 to vertex 4, so the entry in Row3/Columnd isa‘l’
Thereis an edge from vertex 4 to vertex 1, so the entry in Row4/Columnlisa‘l’
All other entries in the adjacency matrix will be zero

Outdegree and Indegree
e Ingenera, the number of 1'sinrow i of 4 correspond to the number of edges
leaving vertex i, i.e. the outdegree of vertex i.
e The number of 1’sin column ;j correspond to the number of edges terminating at
vertex j, i.e. theindegree of vertex ;.

For the diagraph above we can construct the following table:

Vertex | Outdegree | Indegree
1 1 1
2 1 2
3 2 1
4 1 1

Eulerian Digraphs

A diagraph is Eulerian if and only if the outdegree of each vertex equalsitsindegree.
This diagraph is not Eulerian as, for example the outdegree of vertex 2 is 1 while its
indegreeis 2.

Notes:
e Thetotal number of 1'sin the adjacency matrix equals the number of edgesin the
graph.
e Ingeneral, the adjacency matrix is not symmetric for a digraph graph.
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Example 16
Determine the adjacency matrix for the digraph shown below,

Ie a2 12345
10 1 0 0 0
210 01 1 0

3 A=
310 00 10
) 40 1 0 0 1
5 4 5(1 0 0 0 0f

Solution

The digraph has 5 vertices and so the adjacency matrix will have dimension 5 x 5.
Thereis an edge from vertex 1 to vertex 2, so the entry in Rowl/Columnlisa‘l’
Thereis an edge from vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’
Thereis an edge from vertex 2 to vertex 4, , so the entry in Row2/Columndisa‘l’
Thereis an edge from vertex 3 to vertex 4, , so the entry in Row3/Columndisa‘l’
Thereis an edge from vertex 4 to vertex 2, , so the entry in Row4/Column2isa‘l’
Thereis an edge from vertex 4 to vertex 5, so the entry in Row4/Column5isa‘l’
Thereis an edge from vertex 5 to vertex 1, so the entry in Row5/Columnlisa‘l’
All other entries in the adjacency matrix will be zero.

For the diagraph above we can construct the following table:

Vertex | Outdegree | Indegree
1 1 1
2 2 2
3 1 1
4 2 2
5 1 1

Note: This diagraph is Eulerian as the outdegree of each vertex equalsitsindegree.

Hamiltonian Digraphs

A digraph D isHamiltonian if and only if there is a cycle that visits every vertex in the
digraph exactly once. (Note: acycle ends whereis started).

GraphTheory 19



7. Adjacency Matrices & Paths

In the previous examples the entry at position (i, ;) in the adjacency matrix A, corresponds
to the number of paths of length 1 between vertex v; and vertex v;. Itisalso possible to
construct matrices that provide information on paths of length other than 1 between

vczerti ces. For example, to calculate the matrix for paths of length 2 we must calculate
A=A X A.

In general, A" = (ai(,.k)) where a*) isthe number of paths of length £ from i toj. Hence, the

entry at position (i , /) of the matrix 4" indicates the number of paths of length k between
vertex v; and vertex v;.

Example 17: Let G be adirected graph with 5 vertices as shown:

If apath of length 1 exists between two vertices (i.e. vertices are adjacent) then thereisal
in the corresponding position in the adjacency matrix, 4. Here, for example, inspection of
A below reveals the following paths of length 1:

from vertex 1 to vertices 2, 4 and 5
from vertex 2 to vertex 4
from vertex 3to vertex 5
from vertex 5 to vertex 2.

Note that there are no paths of length 1 from vertex 4 to any of the other vertices

Combining the above results we construct the adjacency matrix, 4, for the digraph G:

g A WO NP

O O O O O
P O O O FrL, N
O O O O O Ww
O O O L A
O O Fr Ok, O

To calculate paths of length 2 the adjacency matrix, 4, is multiplied by itself to get 4
giving amatrix representation of paths of length 2.
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In this case we obtain

g b~ WO DN P
o O+ O P
o O O O O
R O O O B+
o O O O O

1
[0
0
0
0
10

For example the matrix 4> shows that there are only four paths of length 2 in the digraph,
i.e from vertex 1 to vertex 2,

from vertex 1 to vertex 4,

from vertex 3 to vertex 2

from vertex 5 to vertex 4.

In general, the matrix of path length » is generated by multiplying the matrix of path length
n —1 by the matrix of path length 1, i.e. the adjacency matrix, 4.

Definition: A digraphisstrongly connected if there is a path from every vertex to every
other vertex.

8. Isomor phisms between Graphs
Graphs G and H are said to be isomor phic (essentially the same graph) if thereis a one-one
and onto map,

o: V(G) — V(H) such that edge AB € E(G) < edge 0(4) ¢(B) € E(H).

In other words there is a one-one correspondence between the vertices of G and the vertices
of H with the property that the number of edges joining any two vertices of G isequal to
the number of edges joining the corresponding vertices of H.

Example 18: The graphs G, and H; below are isomorphic.

G1 2 3 Hy
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In graph G
In graph G,
In graph G
In graph G,
In graph G

: vertex 1 has degree 4 and isjoined to vertices 2, 3, 4 and 5.
: vertex 2 has degree 3 and isjoined to vertices 1, 3, and 4.

: vertex 3 has degree 3 and isjoined to vertices 1, 2, and 5.

: vertex 4 has degree 2 and isjoined to vertices 1 and 2.

: vertex 5 has degree 2 and isjoined to vertices 1 and 3.

Easily checked that thisis the same for graph H; and so the graphs are isomorphic.

Hence, the adjacency list isthe same for both graphs

Vertex | Adjacent
vertices
1 2,3,4,5
2 1,34
3 1,25
4 1,2
5 1,3

Example 19: The graphs G, and H, below are not isomorphic as they have different degree

sequences.

G2

H>

Both graphs have the same number of vertices, i.e. 7. However, Graph G, has degree
sequence (2, 2, 2, 3, 3, 3,3) while Graph G, has degree sequence (2, 2, 3, 3, 3, 3, 4).
Alternatively you could show that the two graphs have different adjacency lists.

GraphTheory
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9. Vertex (Graph) Colouring

The most well-known graph colouring problem is the Four Colour Problem which was first
proposed in 1852 when Francis Guthrie noticed that four colours were sufficient to colour a
map of the counties of England so that no two counties with a border in common had the
same colour. Guthrie conjectured that any map, no matter how complicated, could be
coloured using at most four colours so that adjacent regions (regions sharing a common
boundary segment, not just a point) are not the same colour. Despite many attempts at a
proof it took until 1976 when two American scientists, Appel and Haken, using graph
theory produced a computer-based proof to what had become known as the Four Colour
Theorem.

In graph theory terms vertex (graph) colouring problems require the assignment of colours
(usually represented by integers) to the vertices of the graph so that no two adjacent
vertices are assigned the same colour (integer).

Definition

A k-colouring of agraph isacolouring in which only & colours (numbers) are used. The
chromatic number for agraph isthe minimum number of colours (numbers) required to
produce a vertex colouring of the graph. The chromatic number of agraph G is denoted by

2(G).

Example 20
A graph with no edges has chromatic number 1 while the complete graph K, has chromatic

number n. Inthefigures below weassigna‘l’ to the graph with no edges on the left and
say that it is 1-colourable while we assign the numbers 1, 2, 3, 4, 5 to the complete graph
Ks ontheright and say that it is 5-colourable.

.I—‘

| dentifying the chromatic number in the two cases shown above is straightforward. In
general, however determining the exact chromatic number of a graph is ahard problem and
no efficient method exists. The only approach that would identify the chromatic number of
agraph G with absolute certainty would involve investigating all possible colourings.
Clearly as graphs become larger this method becomes impractical, even using the most
powerful computers that are available. The best that can be doneis to determine lower and
upper bounds on the chromatic number and techniques such as looking for the largest
complete subgraph in G (for alower bound) and the Greedy algorithm (for an upper bound)
enables usto do so. The Greedy algorithm however is very inefficient but is adequate for
‘small’ graphs with the aid of a computer.
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TUTORIAL
1. Sketch the following graphs:
(i). 4-regular, (ii). 5-regular,

(iv). Cs, (V). K23

2. (i). Which of the following graphs are connected?

B C

(@). (b).

(0). (d).

(iii). Ka,

(VI) Kaa

(ii). If agraph is not connected state what its connected components are.

(iii). Which are ssimple graphs and which are multigraphs?

3. Sketch the undirected graph G defined below and construct the adjacency matrix.

G={V,E}={{1,234,5}{(12,(13),(15).(15),(21),(223),(23), 31,
(32,(32,(34),359),(43),(45,51).51,(573), 064} }

GraphTheory
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4. Consider the adjacency matrix

00 1 1 1]
00110
4=/1100 0
11001
100 1 0

(i). Sketch the associated undirected graph G.

(ii). Write down the degree sequence for G.

(iii). Show that the Handshaking Lemma holds for G.

(iv). Is G Eulerian? Justify your answer and give an Euler circuit if appropriate.

(v). Is G Hamiltonian? Justify your answer and give a Hamiltonian circuit if appropriate.
(vi). Removal of an edge from G results in a bipartite graph. Identify which edge should be
removed and sketch the resulting graph.

(vii). How many edges need to be added to G to obtain a complete graph? Identify which
edges need to be added and sketch the resulting graph.

5. Given agraph, G, its complementary graph G , obtained from G by replacing edges with
non-edges and non-edges by edges. If G isgiven by:

Sketch its complementary graph, G .

6. A graph, G, isk-regular if al vertices have degree k. Calculate the degree sum for a k-
regular graph with » vertices and the number of edgesin G.

7. Inasimple graph, with at least two vertices, there are at least two vertices of the same
degree. Thisresult isnot true for multigraphs. Sketch athree vertex multigraph with all
vertices of different degree.

8. Consider the graph, G below. Explain why G does not have a Hamiltonian circuit.

~
%
>
03.—.70
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9. Define the term Hamiltonian cycle (circuit) and sketch a Hamiltonian graph.

10. Define the term Euler circuit and sketch an Eulerian graph.

11. Consider the graph below,

S R
(i). Isthe graph Eulerian? If so give an Euler circuit of G.

(i1). Isthe graph Hamiltonian? If so give a Hamiltonian circuit of G.

12. Sketch asimple graph G whose vertices all have even degree but G is not Eulerian.

13. Consider the graph G below,

T S
(). Is G Eulerian? If so give an Euler circuit of G.
(i1). Is G Hamiltonian? If so give a Hamiltionian circuit of G.

14. Determine whether the complete graphs K77 and K3, are Eulerian.

15. Determine the adjacency matrix for the graph shown below,
P

€1

€6
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16. The adjacency matrix for agraph, G is given by

(OO I el R\
= N O -
R O N -
O r P W

Without drawing G, and using only the matrix 4, answer the following:
(i) How many edges does G have?

(if) How many paths of length 2 join vertices 4 and D.

17. How many edges does atree, T, with 5000 vertices have?

18. Determine which bipartite graphs, K = aretrees.

m,n

19. Determine the conditions on » and s that will guarantee that the compl ete bipartite
graph, K, s will have an Euler circuit.

20. Explaining your answer state whether a graph on 7 vertices can have each vertex of
degree 5.

21. Consider agraph G on 12 vertices where each vertex has degree 7. How many edges
does G have? Explain your answer.

22. (i) Sketchthedigraph D = { {1, 2, 3, 4}, (1,2), (1,4), (2,3), (2,4), (3,2), (3,4), (4,1) }.

(ii) Determine the adjacency matrix for D.

1011
1101

(iii) If the adjacency matrix 4 satisfies, 4° = 1011 calculate 4° and explain the
0101

meaning of the entry at position (1, 2) in 4°.
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23. Consider the following adjacency matrix, 4, for adirected graph, G

A

Il
R O O B+ O
O r B O O
R B O O O
O O+ O B
o O+ B+ O

Without drawing G, and using only the matrix 4 answer the following:
(i) Calculate the indegree and outdegree of each vertex.
(ii) Determine whether G is Eulerian. Explain your answer.

(iii) How many edges does G have? Explain your answer.

24. State the Handshaking Lemma for directed graphs, explaining your answer.

25. Determine the adjacency matrix for the digraph below.

P

S
0 1 0 0 1]
00010
26. Consider the following adjacency matrix A=|1 0 0 0 1
0 00O00DO
101 0 1 O]

(i). Sketch the associated digraph.

(i1). Determine whether the digraph is Eulerian and state an Euler circuit if one exists.
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27. Determine whether the two graphs below are isomorphic.

SN

28.(i). Inacyclegraph C, state how the number of verticesis related to the number of
edges.

(ii). Sketch the cycle graphs C; and Cy.

(iii). What is the chromatic number of a cycle graph, C, ?

GraphTheory
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Solutions

08
e

V). E j (vi). X i i I

2. (i). Graphs (b) and (c) are connected as there is a path between any two of their vertices.

(ii). Graph (a) is disconnected and its disconnected components are { ABCD} and { EF}.
Graph (d) is disconnected and its disconnected components are { ABE} and { CD}

(iii). Graphs (a) and (b) are simple graphs.

Graph (c) isamultigraph with multiple edges (BC) and (BC).
Graph (d) is a multigraph with multiple edges (CD) and (CD) and a self-loop (BB).
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01102
5 1 0200
3. 2 A={1 2 0 1 1
4 00110
12 01 10
3
1
4. (i).

(ii). degree sequence, (2, 2, 2, 3, 3)
(iii). By the Handshaking Lemma Zn:deg(vj) = 2| E(G)| where | E(G)| isthe number of
=

5

edgesin G. Wetherefore have ) deg(v,) = 2+2+2+3+3=12 and 2| £(G)| = 2x6=12.
«.=1

Hence, the Handshaking Lemma holds for G.

(iv). G isnot Eulerian as not al the vertices have even degree.

(v). Removal of edge (4, 5) resultsin the bipartite graph below.

1
5
4 2
3
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(vi). Adding the four edges (1, 2), (2, 5). (3, 4), (3, 5) results in the complete graph K.
1

5. The complementary graph, G is

6. Theregular graph G hasn vertices all of degree & and so the sum of all the degreesis nk.
By the Handshaking Lemma Zn:deg(vj) =2| E(G)| where | E(G)| isthe number of edgesin
=

_kn

G. Wetherefore have kn = 2| E(G)| = | E(G)) 5

7. In the graph below; deg(P) = 4, deg(Q) =5, deg(R) =3
Q

8. A Hamiltonian circuit visits each vertex exactly once and returns to the starting vertex.
Note that G consists of two subgraphs PUV and QRST connected by a bridge WX. If we
start on the left-hand-side (PUY) we must cross the bridge (#X) in order to visit every
vertex on the right-hand-side but to get back to our starting vertex we must cross the bridge
again thereby visiting the vertices X and 1 for a second time. Therefore G does not have a
Hamiltonian circuit.

Note: No graph with a bridge has a Hamiltonian circuit.
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9. A Hamiltonian circuit visits each vertex exactly once and returns to the starting vertex.
The graph below is Hamiltonian and a Hamiltonian circuit is: ABCDA. Note that we do not
need to use al edges.

10. An Euler circuit is a path through a connected graph which starts and ends at the same
vertex and travels along every edge of the graph exactly once. The graph below is Eulerian
and an Euler circuit is: ABCDA.

A

11. (i). The graph isnot Eulerian as it contains vertices of odd degree, i.e. vertices P, S and
T al have degree 3.

(ii). The graph is Hamiltonian and a Hamiltonian circuit is, PTUVSRQOP.

12. For example, the graph below has every vertex of » degree 2 but it isnot Eulerian asit

is disconnected.

13. (i). Eulerian: Yes as all vertices have even degree. Euler circuit: PSROSTUPTQP.
(i1). Hamiltonian: Yes. Hamiltonian circuit: PORSTUP.

P

T S

14. The graph K77 is 76-regular and all vertices therefore have even degree so that, by
Euler’ stheorem, K77 is Eulerian.
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The graph K3, is 31-regular and all vertices therefore have odd degree so that K3 is not
Eulerian.

010 2 1 001001
, 1 021 . 1100110
15(). A= (i) M =

0 201 0110010

2110 00111001

16 (i). Number of edgesin G = |E(G)|:1 > deg(X) _ L 20-10.
2 vFlo) 2

(ii) For the number of paths of length 2 joining vertices 4 and D we must calculate 4.

2113)[2113][1577 8
el 0211021 |7625
12011201 |7 26 5
31103110 |8 5511

There are 8 paths of length 2 joining vertices 4 and D

17. Notethat T isatree so that, by definition, 7 is cycle-free and has n — 1 edges.
As|V] = 5000 then |E| = 5000 — 1 = 4999

18. 1f m=1and/orn=1then K, , isatree.

19. If » and s are both even the complete bipartite graph, K, ; will have an Euler circuit as
each vertex will have even degree.

20. By the Handshaking Lemmathisis not possible as the sum of the degrees of the
vertices, i.e. 7x5=235, which isodd.

21. By the Handshaking Lemma the degree sum is twice the number of edges. Hence,
since degree sum = 12x 7 =84 we have that 2E = 84 and so the number of edges E = 42.
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22, (i). 1

2
4\
3
0101 1 2 0 2
0 011 111 2
(). A= (). A=
0101 1 2 0 2
1 00O 1011

The entry at position (1, 2) in 4> indicates that there are exactly two paths of length 3 from
vertex 1 to vertex 2, i.e. 1412 and 1232.

23. (i). Labdl the rows and columns of the matrix, P, O, R, S, T from top to bottom and P,
O, R, S, T from left to right. The sum of the entriesin row ;j corresponds to the outdegree of
vertex ;.

The sum of the entriesin column;j corresponds to the indegree of vertex ;.

P 0 R S T
Outdegree 1 2 3 2 2
Indegree 2 2 2 2 2

(i1). No, G isnot Eulerian as the indegree does not equal the outdegree for each vertex.
(iii). The graph G has 10 edges as each 1 in the adjacency matrix corresponds to an edge.
24. For directed graphs the Handshaking Lemma states that the sum of the indegreesis
equal to the sum of the outdegrees and the combined total is equal to number of edges.

Thisis because every edge counts exactly once to the outdegree total and exactly onceto
the indegree total.

25.31). A=

m O O O
O O -
o O~ O
O = B
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26. (i). > @

N

/

(i1) No, G isnot Eulerian as the indegree does not equal the outdegree for each vertex. We

can determine this from the adjacency matrix.

27. The graphs are isomorphic under the correspondence shown.
@ a4 A & 4
4
4 P
o € 4 o €

The adjacency list is the same for both graphs

a B, 0
S a, 7, e
Y B o0
9 7 0
% g7 @
e 0,0,
0 a, e

28(i). The number of verticesin C, equalsthe number of edges, and every vertex has
degree 2.

(if). Thecyclegraphs C, and C4 are shown below.

(iii). The chromatic number of acyclegraph, C,,is2if nisevenand 3if n isodd.

GraphTheory

36



