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Integral Calculus 
 
1). Antidifferentiation or Indefinite Integration 
 
Definition:  A function )( xF  is called an antiderivative of )( xf  if 
 
     )()( xfxF =′   . 
 
The problem we shall now look at is how to determine )( xF  from )( xf . 
 
Consider the following.  Which function when differentiated gives x2 ? 
 
If we recall the rules of differentiation it should be obvious that 
 

    [ ] xx
dx
d

22 =  . 

 
Therefore 2x  is an antiderivative of x2 .  We say “an” antiderivative because there are others: 
 

    [ ] xx
dx
d

232 =+  

 

    [ ] xx
dx
d

2132 =−  

 

    [ ] xx
dx
d

22 =+ π   . 

 
In fact, any function of the form 
 
    CxxF += 2)(   , 
 
where C is a constant, is an antiderivative. 
 
 
Further Example 
 
(1). 3)( xxf =   CxxF += 4

4
1)(  

 
 
The process of determining antiderivatives is usually referred to as integration.  We use the 
following notation: 
 

     CxFdxxf += )()(  

 
 
 Integral sign Integrand Differential Antiderivative Constant of 

integration 
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Notes: (i). The differential dx  indicates the variable of integration.  We could be 
integrating with respect to another variable, say t, in which case we would 
have 

 

     CtFdttf += )()(   . 

 
  (ii). Because of the unspecified constant C, we call this process indefinite 

integration. 
 
 
Example 
 

(2). Determine  dxx 45  . 

 

    

.

5

5

4

Cx

dxxI

+=

= 
 

 
 
 
 
 
2). The Rules of Integration and the Integrals of Some Basic Functions 
 
 
 

(a).    = dxxfkdxxfk )()(           (where  k  is a constant) 

 
 
 

(b).   [ ]  +=+ dxxgdxxfdxxgxf )()()()(  

 
 
 

(c).   Cxkdxk +=         (where  k  is a constant) 

 
 
 

(d).   )1(
1

1 1 −≠+
+

= + nCx
n

dxx nn   . 
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3). The Integrals of Some Other Functions 
 
 

 
)( xf  

 

 
CxF +)(  

 
)(cos x  

 

 
Cx +)(sin  

 
)(sin x  

 
Cx +− )(cos  

 
xe  
 

Ce x +  

x
1

 Cx +ln  

 
 
We shall regard the above as our table of standard integrals.  It will be advantageous to be 
able to think of this table in terms of other variables (e.g. t , u , etc.) as well as x. 
 
 
Using the rules and the table we can integrate simple functions. 
 
 
 
Examples 
 

(3). Determine  −= dxxI )25( . 

 

  

Cxx

Cxx

dxdxx

dxxI

+−=

+−=

−=

−=





2

2][5

25

)25(

2
2
5

2
2
1

 

 
 

Recall from 
Differential 
Calculus that all 
“trig angles” must 
be in radians and 
not in degrees. 
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(4). Determine  = dxxI  . 

 
 First write the square root as a power. 
 

  

Cx

Cx

dxxI

+=

+=

= 

2
3

2
3

2
1

3
2

2
3  

 
 
 

(5). Determine   += dx
x

xI
3

1
  . 

 
 Note that we cannot integrate the top and bottom of the fraction separately.  In order to 

integrate, we divide out: 
 

  
C

xx

Cxx

Cxx

dxxx

dx
xx

dx
x
x

x

dx
x

xI

+−−=

+−−=

+
−

+
−

=

+=





 +=





 +=

+=

−−

−−

−−







1

2

1

12

][

11

1

1

2

12
2
1

12

23

23

33

3
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(6). Determine   += dx
x

xI
2

1
 . 

 
 This is similar to the previous example, but with a subtle variation in the denominator. 
 

  
Cx

x

Cxx

Cxx

dxxx

dx
xx

dx
x
x

x

dx
x

xI

++−=

++−=

++
−

=

+=





 +=





 +=

+=

−

−

−−







ln
1

ln

ln
1

][

11

1

1

1

1

12

2

22

2

 

 
 
 Note the natural log! 
 
Sometimes we will have additional information that will allow us to determine a specific 
value for the constant of integration, C. 
 
Examples 
 

(7). Determine   −= dxxxI )4( 2  if  21=I  when 3=x  . 

 

   −= dxxxI )4( 2  

 
  CxxI +−= 3

3
122  . 

 
 Set 21=I  and 3=x , then solve for  C : 
 
 C+×−×= 3

3
12 33221      →    C+−= 91821      →     12=C  

 
  122 3

3
12 +−= xxI . 

Note the power of −1 in the second term 
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(8). A projectile is travelling in a straight line at a constant velocity  u .  At time 0=t  the 

projectile starts accelerating at  a ms−2.  Determine expressions for the projectile’s 
subsequent velocity and displacement. 

 
 Let the velocity be denoted by  v: 
 

  a
dt
dv =  

 
 Integrate to eliminate the derivative: 
 

  = dtav           (Note that  a  is a constant.) 

 
  1Ctav +=   . 
 
 When  0=t ,  uv = : 
 
  10 Cau +×=           →          uC =1  
 
  utav +=  
 or 
  tauv +=   . 

 
 
 Now determine displacement.  Let the displacement be denoted by  s : 
 

  v
dt
ds =  

 

  = dtvs           (Note that  v  is not a constant.) 

 

   += dttaus )(  

 
  2

2
2
1 Ctatus ++=  . 

 
 Assume that  0=s  when  0=t : 
 
  2

2
2
1 000 Cau +×+×=           →          02 =C  

 
 and so 
 
  2

2
1 tatus +=   . 
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4). Indefinite Integration by Substitution 
 
From the table of standard integrals we see that 
 

    Cxdxx += )(sin)(cos   , 

 

but what is   dxx )2(cos    ? 

 
The answer is NOT simply Cx +)2(sin . 
 
Our table is our standard set.  If we have an integral that is non-standard, that is a variant of 
a standard integral or something more complicated, we may be able to convert it into a 
standard form by a substitution or change of variable. 
 
Consider 
 

    = dxxI )2(cos   . 

 
To make the integrand standard, we need a variable in the cosine with a coefficient of 1.  To 
get this, set 
 
     xu 2=   . [1] 
 
This turns )2(cos x  into )(cos u .  However the differential must now reflect the change of 
variable, so we must express dx  in terms of du .  We do this by differentiating [1], 
 

     2=
dx
du

  , 

 
then splitting this derivative term into its differentials to give 
 
     dxdu 2=  
or 
     dudx 2

1=   . [2] 

 
[1] and [2] together turn the non-standard integral into 
 

    

( )

.)(sin

) of in terms (standard)(cos

)(cos

2
1

2
1

2
1

Cu

uduu

duuI

+=

=

=





 

 
Substituting back for u in terms of the original variable x gives 
 
    .)2(sin2

1 CxI +=  
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Further Examples 
 

(9). (i). Determine  = dxxI )4(cos   . 

 

  = dxxI )4(cos  

 
 
       Set: xu 4=  
 

       Differentiate: 4=
dx
du

 

 
        dxdu 4=  
 
        dudx 4

1=  

 
 

  

Cx

Cu

duu

duuI

+=

+=

=

=





)4(sin

)(sin

)(cos

)()(cos

4
1

4
1

4
1

4
1

 

 
 
 
 
 
 
 
(9). (ii). By using the substitution  bxau +=  and following the above pattern we can 

show that 
 

   Cbxa
a

dxbxaI ++=+=  )(sin
1

)(cos , 

 
  (providing that  a  and  b  are constants). 
 

  Note:   + dxbxa )(cos  is called a linear variant of  dxx )(cos   . 
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(10). (i). Determine   += dxxI )34(sin  

 

   += dxxI )34(sin  

 
 
       Set: 34 += xu  
 

       Differentiate: 4=
dx
du

 

 
        dxdu 4=  
 
        dudx 4

1=  

 
 

  

Cx

Cu

duu

duuI

++−=

+−=

=

=





)34(cos

)(cos

)(sin

)()(sin

4
1

4
1

4
1

4
1

 

 
 
 
 
 
 
 
 
 
 
 
(10). (ii). By using the substitution  bxau +=  we can generalise the above result for 

any linear variant of the integral of )(sin x : 
  

   Cbxa
a

dxbxaI ++−=+=  )(cos
1

)(sin , 

 
  (providing that  a  and  b  are constants). 
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(11). (i). Determine   −= dteI t  . 

 

   −= dteI t  

 
 
       Set: tu −=  
 

       Differentiate: 1−=
dt
du

 

 
        dtdu −=  
 
        dudt −=  
 
 

  

Ce

Ce

due

dueI

t

u

u

u

+−=

+−=

−=

−=

−



 )(

 

 
 
 
 
 
 
 
(11). (ii). General result: 
 
 

   CedxeI xx +==   

 
 

   Ce
a

dxeI bxabxa +== ++ 1
  . 
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(12). (i). Determine  −
=

42 x
dxI   . 

 

    −
=

42 x
dxI  

 
 
       Set: 42 −= xu  
 

       Differentiate: 2=
dx
du

 

 
        dxdu 2=  
 
        dudx 2

1=  

 
 

  

Cx

Cu

du
u

du
u

I

+−=

+=

=

=





42ln

ln

1

)(
1

2
1

2
1

2
1

2
1

 

 
 
 
 
 
(12). (ii). General result: 
 
 

   Cxdx
x

I +==  ln
1

 

 

   Cbxa
a

dx
bxa

I ++=
+

=  ln
11

  . 
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Summarising the general results derived by the substitution method we have 
 
 
 
 

 
 
providing  a  and  b  are constants. 
 
 
 
The substitution technique can also be used with integrals of the form 
 

    [ ]= dxxhxgI n )()(  

 
providing 
 

    [ ])()( xg
dx
daxh =  

 
where a is some multiplying constant. 
 
 
 
 
 
Examples 
 

(13).     += dxxxI 52 )73(6  

 
 

     += )6()73( 52 dxxx  

 
 continued over . . . 

 
)( xf  

 
CxF +)(  

 
)(cos bxa +  

 
Cbxa

a
++ )(sin

1
 

 
)(sin bxa +  

 
Cbxa

a
++− )(cos

1
 

 
bxae +  

 
Ce

a
bxa ++1

 

bxa +
1

 Cbxa
a

++ln
1
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       Set: 73 2 += xu   , 
 
       Differentiate: 
 

        x
dx
du

6=  

 
        dxxdu 6=   . 
 

    = duuI 5  

 
    Cu += 6

6
1  

 
    Cx ++= 62

6
1 )73(   . 

 
 

(14). Determine   −= dxexI x2

 . 

 

   −= dxxeI x2

 

 
       Set: 2xu −=  
 
       Differentiate: 
 

        x
dx
du

2−=  

 
        dxxdu 2−=  
 
        dudxx 2

1−=  

 

  

Ce

Ce

due

dueI

x

u

u

u

+−=

+−=

−=

−=

−





2

2
1

2
1

2
1

2
1 )(
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(15). (i). Now consider integrals of the form 
 

   
′

= dx
xf
xfI
)(

)(
 

 
  where the integrand is a fraction whose numerator (top bit) is the derivative of its 

denominator (bottom bit). 
 
  If we set  )( xfu = , then differentiate and separate to give dxxfdu )(′= , 

the integral can be recast as 
 
 

   CxfCudu
uu

duI +=+===   )(lnln
1

 . 

 
 
  That is, 
 

   Cxfdx
xf
xf +=

′
 )(ln

)(

)(
  . 

 
 
  You may use this as a general result. 
 
 
 
 

(15). (ii). Determine   +
= dx

x
xI

42
 . 

 
  If we “fine tune” this integral by re-writing it as 
 

    +
= dx

x
xI

4

2
22

1  , 

 
  the numerator is now the exact derivative of the denominator and so we can use 

the result above: 
 

   

.4ln

4

2

2
2
1

22
1

Cx

dx
x

xI

++=

+
= 
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(16). Sometimes it is not obvious that a change of variable will help in the integration 
process.  Consider 

 

    −= dxxxI 2   . 

 
       Set: 2−= xu  
 

       Differentiate: 1=
dx
du

 

 
        dxdu =  
 
 
 This means that the integral can be written as 
 

   = duuxI   . 

 
 
 To complete the change we must write  x  in terms of  u : 2−= xu  
 
        2+= ux  
 
 

   

Cxx

Cuu

duuu

duuu

duuuI

+−+−=

++=

+=

+=

+=







2
3

2
5

2
3

2
5

2
1

2
3

2
1

)2()2(

)2(

)2(

)2(

3
4

5
2

3
4

5
2

 

 
 
 
 
Integration by substitution is an extremely important technique.  Spotting whether a 
substitution will work, and what that substitution is, can be tricky but will become easier, the 
more problems you tackle. 
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5). Integration by Parts 
Another useful technique for integrating ‘difficult’ functions is integration by parts.  The 
method is derived from the product rule for differentiation which states that if  f  and g are 
both functions of x then : 
 
 

  )]([)()]([)(])()([ xf
xd

dxgxg
xd

dxfxgxf
xd

d += .   

 
The rule can be written in a more compact form as  
 

  gfgfgf
xd

d ′+′=][ .   

 
Rearranging this expression yields  
 

  gfgf
xd

dgf ′−=′ ][ .   

 
Integrating both sides, with respect to x, gives the rule for integration by parts,   
 

  xdgfgfxdgf  ′−=′   

 
which enables us to integrate many functions involving products of functions of x.  
 

The goal here is to obtain a less complicated integral on the right-hand-side, i.e. xdgf ′  

than the one we started with, i.e. xdgf ′ .   

 
Application of the method requires us to identify candidates for  f , the function to be 
differentiated, and g′ , the function to be integrated.   
 
 
Examples 
 

(17).  (i). Determine  dxxx )(sin  using integration by parts. 

 
 
  Write the integral as 
 

    = xdxxI )(sin  

 
  and set 
 
   xxf =)(    )(sin)( xxg =′   . 
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  Note that we normally select )( xf  as the part of the product that results in a ‘simpler’ 
function when differentiated. 

 
 
 Differentiating )( xf  and integrating )( xg′  gives: 
 
   1)( =′ xf   )(cos)( xxg −=   . 
 
 
 Applying the rule for integration by parts: 
 

   ( )







+−=

−−−=

′−=′=

.)(cos)(cos

)(cos1)(cos

dxxxx

dxxxx

xdgfgfxdgfI

 

 
 
 The remaining integral is one of our standard integrals and can easily be determined: 
 

   

.)(sin)(cos

)(cos)(cos

Cxxx

dxxxxI

++−=

+−= 
 

 
 
 The required constant of integration is introduced at the end. 
 
 
 

(17). (ii). Determine  dxxx )(sin2  using integration by parts. 

 
 Following the pattern of part (a), write the integral as:  
 

    = dxxxI )(sin2  

 and set 
 
   2)( xxf =   )(sin)( xxg =′   . 
 
 Once again we select )( xf  as the part of the product that simplifies when 

differentiated.  Now integrate )( xg′  and differentiate )( xf : 
 
   xxf 2)( =′   )(cos)( xxg −=   . 
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Applying the formula: 
 

 



−−−=

′−=′=

dxxxxx

xdgfgfxdgfI

])(cos[2)(cos2
 

  +−= dxxxxx )(cos2)(cos2     (*) 

 
 The remaining integral is still non-standard and requires a second integration by parts: 
 
   xxf =)(   )(cos)( xxg =′   . 
 
   1)( =′ xf    )(sin)( xxg =   . 
 
 
Applying the formula: 
 

  

)(cos)(sin

)(sin)(sin

)(sin.1)(sin)(cos

xxx

dxxxx

dxxxxdxxx

+=

−=

−=




 

 
 Substituting this result back into (*) above and adding a   ‘+  C’  gives 
 

  

Cxxxxx

Cxxxxx

dxxxxxI

+++−=

+++−=

+−= 

)(cos2)(sin2)(cos

])(cos)(sin[2)(cos

)(cos2)(cos

2

2

2

 

 
 
 

(18). Now consider  = dxxxI ln3  . 

 
 Sometimes we have to think a little harder as to which part of the product should be 

chosen as )( xf  and which part should be chosen as )( xg′ .  In this example we do not 
know how to integrate xln  but we do know how to differentiate it.  We therefore 

choose to differentiate xln  and integrate the 3x  term.  Define  
 
 
   xxf ln)( =   3)( xxg =′   , 
 
 giving 
 

   
x

xf 1
)( =′   4

4
1)( xxg =   . 
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 Substituting the appropriate expressions into the integration by parts formula gives 
 

   

Cxxx

Cxxx

dxxxx

dxx
x

xx

xdgfgfI

+−=

+−=

−=

−=

′−=







4
16
14

4
1

4
4
1

4
14

4
1

3
4
14

4
1

4
4
14

4
1

ln

ln

ln

.
1

.ln

           

 

 
 
 
 

(19). Now consider  = dxxeI x )2(sin3 . 

 
 Note:  This example is messy, but it does illustrate a “nice” application of repeated 

integration by parts. 
 
 If we perform a repeated integration by parts, each time setting  f  as the trigonometric 

function and  g′   as the exponential function, we obtain 
 

  −−= dxxexexeI xxx )2(sin)2(cos)2(sin 3
9
43

9
23

3
1   . 

 
 The original integral has re-appeared in the last term on the right-hand-side and so it 

looks like the approach is futile.  However, we can replace the integral by the letter  I , 
because that is how we defined it at the start: 

 
  IxexeI xx

9
43

9
23

3
1 )2(cos)2(sin −−=  . 

 
 This is now an equation for  I .  Since  I  is what we are after, solving this equation 

should give us the integral (providing we remember it must contain a  + C ): 
 
  )2(cos)2(sin 3

9
23

3
1

9
4 xexeII xx −=+  

 
  )2(cos)2(sin 3

9
23

3
1

9
13 xexeI xx −=  

 
  [ ] CxexeI xx +−= )2(cos)2(sin 3

9
23

3
1

13
9  

 
  [ ] CxexeI xx +−= )2(cos2)2(sin3 33

13
1  

 
  [ ] CexxI x +−= 3

13
1 )2(cos2)2(sin3   . 
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6). Integration Using Trig Identities 
 
Integrals that contain powers of sines or cosines are non-standard.  In such cases the 
following trigonometric identities may prove useful: 
 
  ])2(cos1[)(sin 2

12 xx ωω −=  

 
  ])2(cos1[)(cos 2

12 xx ωω +=   . 

 
Examples 
 

(20). Determine  = dxxI )2(sin 2  . 

 

  

.)4(sin

])4(sin[

])4(cos1[

)2(sin

8
1

2
1

4
1

2
1

2
1

2

Cxx

Cxx

dxx

dxxI

+−=

+−=

−=

=





 

 
 
 
 
 
 

(21). Determine  = dxxI )3(cos2  . 

 

  

.)6(sin

])6(sin[

])6(cos1[

)3(cos

12
1

2
1

6
1

2
1

2
1

2

Cxx

Cxx

dxx

dxxI

++=

++=

+=

=
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7). Integration Using Partial Fractions 
 
Partial fractions can sometimes be used to re-write an integrand in a more friendly form. 
 
 
 
Example 
 

(22). Determine   ++
+= dx

xx
xI

)3()12(

52
 with the aid of partial fractions.  

 
 
 
 Applying a partial fraction expansion, it can be shown that: 
 

  
312)3()12(

52 5
1

5
8

+
+

+
=

++
+

xxxx
x

  . 

 
 
 
 This means that the integral can be re-written as 
 

   +
+

+
= dx

x
dx

x
I

)3(

1

)12(

1
5
1

5
8   . 

 
 
 
 Each of the sub-integrals can be determined from the result: 
 

   Cbxa
a

dx
bxa

++=
+ ln

11
  . 

 
 
 
 So 
 

  

.3ln12ln

3ln12ln

)3(

1

)12(

1

5
1

5
4

5
1

2
1

5
8

5
1

5
8

Cxx

Cxx

dx
x

dx
x

I

++++=

++++=

+
+

+
= 
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8). Definite Integration 
 
(a). Definition and Evaluation of a Definite Integral 
 
Consider the graph of a function )( xfy =  and denote the function’s integral by 

CxF +)( : 
 

 

 
y 

x 
O a b 

)( xfy =  

A 

 
                                     Figure 1a 
 

 

 
y 

x 
O a b 

)( xfy =  

xi 

Δx 

 
                                      Figure 1b 
 
 
 
By squeezing more and more rectangles into the area, we obtain better and better 
approximations to A.  It can be shown that 
 

  [ ] )()()()( aFbFxFdxxfAA b
a

b

an −===→    . 

 
This is a statement of the Fundamental Theorem of Integral Calculus. 
 

Integration can allow us to work 
out the area A of the shaded region 
between the curve )( xfy = , 

the x-axis and the vertical lines 
ax =  and bx = . 

Approximate the area using  n 
narrow rectangles. 
 
Area of a typical rectangle: 
 

 xxf i Δ)(   . 

 
Approximation of total area: 
 

    
=

Δ=≈
n

i
in xxfAA

1

)(  
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The integral 
 

   
b

a
dxxf )(  

 
is called a definite integral, with a and b the limits of integration. 
 
 
 
 
Notes: (i). Sometimes the integral is written as 
 

     
=

=

bx

ax
dxxf )(   . 

 
   If you always keep in mind the variable of integration (x in this case) you 

may drop the “x =” ‘s. 
 
 
 
  (ii). Although definite integration is introduced through area under a curve, it 

does have far wider interpretations and applications.  We shall use the area 
interpretation later.  In the meantime, just learn how to evaluate definite 
integrals. 

 
 
 
 
 
 
Example 
 

(23). Evaluate 
1

0

2 dxx  . 

 

     

[ ]

.

01

3
1

3
3
13

3
1

1

0
3

3
1

1

0

2

=

−=

=

= 

x

dxxI
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Further Examples 
 
 

(24). Evaluate  −
−

2

1

2 )1( dxx  . 

 

  

[ ]

( ) ( )

( ) ( )

0

12

12

)1()1(22

)1(

3
1

3
8

3
1

3
8

3
3
13

3
1

2

1
3

3
1

2

1

2

=

−+−=

+−−−=

−−−×−−×=

−=

−=

−

−

xx

dxxI

 

 
 
 

y 

x 
O −1 1 2 

 
 
 
 Area below the x-axis is negative and cancels out the positive area above the x-axis. 
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(25). Evaluate  
4

0
)2(sin

π

dxx  . 

 
 

  

[ ]

[ ]

2
1

2
1

22
1

02
1

0

]10[

)0(cos)(cos

)2(cos

)2(sin

4

4

=

−−=

−−=

−=

= 

π

π

π

x

dxxI

 

 
 
 
 
 
(b). Effect of a Change of Variable (Integration by Substitution) 
 
If we transform an integral using a substitution, we can incorporate the limits in one of two 
ways.  We can treat the integral as indefinite and only evaluate with the limits after the 
integration has been done and the resulting expression has been transformed back to the 
original variable of integration.  Alternatively, we can transform the limits as we go along. 
 
 
 
Example 
 

(26). Evaluate   −
1

0

2)12( dxx  

 
Method 1 is to treat the integral initially as indefinite and leave the evaluation at the limits 
until the end: 
 

   −=
1

0

2)12( dxxI  

 
       12 −= xu  
 

       2=
dx
du

 

 
       dxdu 2=  
 
       dudx 2

1=  

Remember: Radians, not degrees! 
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[ ]

3
1

6
1

6
1

3
6
13

6
1

1

0
3

6
1

3
6
1

3
6
1

2
2
1

2
12

1

0

2

)1(1

)12(

limits) ereintroduc (now)12(

C) omit the(can 

limits) omit thely (temporari)(

)12(

=

+=

−−=

−=

−=

+=

=

=

−=







x

x

u

duu

duu

dxxI

 

 
 
 
 
 
 
Method 2 is to transform the limits as we go: 
 

  
=

=
−=

1

0

2)12(
x

x
dxxI  

 
       12 −= xu  
 

       2=
dx
du

 

 
       dxdu 2=  
 
       dudx 2

1=  

 
       Limits: 
 
       10 −=→= ux  
 
       11 +=→= ux  
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[ ]

3
1

6
1

6
1

3
6
13

6
1

1

1
3

6
1

1

1

2
2
1

)1()1(

=

+=

−−+=

=

=

+=

−=

+=

−=
u

u

u

u

u

duuI

 

 
 
 
 
 
 
 
 
 
 
Notes: (i). A result that sometimes proves useful is 
 

     =+
c

a

c

b

b

a
dxxfdxxfdxxf )()()(   . 

 
 
 
 
 
  (ii). Definite integration has a few restrictions.  One problem arises when the 

integrand and its antiderivative are undefined at or between the limits of 
integration.  If this is so we may not be able to evaluate the integral.  For 
example, 

 

    −

0

1
2

1 dx
x

     ,     
1

0
2

1 dx
x

     and     −

1

1
2

1 dx
x

 

 
   all cannot be evaluated because of problems at 0=x .  However, 
 

     
−

−

1

2
2

1 dx
x

     and     
2

1
2

1 dx
x

 

 
   can be evaluated since the problem value is outside the limits. 
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(c). Using Definite Integration to Determine Areas Between Curves 
 
Consider the area enclosed between the curves )(xfy =   and  )(xgy = , restricted by 
the vertical lines  ax =   and  bx = : 
 
 

y

x
O

y = f(x)   (upper)

y = g(x)  (lower)

a bxi

Δx

 
 

 
The area of the rectangular strip located at ixx =  is given by 

   
   xxgxfA ii Δ−=Δ ])()([  . 

 
 
 
The total area is approximated by summing over all strips covering the area: 
 

   
=

Δ−≈
n

i
ii xxgxfA

1

])()([  . 

 
 
 
The exact area is given by the limit of this expression as 0and →Δ∞→ xn , which is the 
definite integral 
 

    −=
b

a
dxxgxfA ])()([  . 

 
 
 
Note that we don’t have to establish whether or not the curves lie wholly or partly above or 
below the x-axis; the formula automatically takes this into account.  However a sketch of the 
curves may be useful to establish which is upper and which is lower.  Also, a little bit of 
analysis may be necessary to determine the limits of the integration. 
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Example 
 
(27). Determine the area in the 1st quadrant enclosed by the curves xy =  and 3xy = . 
 
First determine where the two curves intersect by equating the y’s, rearranging and solving 
for  x: 
 
                     xx =3  
 

   

.0)1()1(

0)1(

0

2

3

=−+

=−

=−

xxx

xx

xx

 

 
 
Points of intersection are located at  1−=x , 0=x   and  1+=x , giving the graphs in 
the 1st quadrant as: 
 

y

xO 1

y  =  xy  =  x3

 
 
The enclosed area is therefore given by the definite integral 
 

   

[ ]

[ ]

4
1

4
1

2
1

1

0
4

4
12

2
1

1

0

3

0

)(

=

−−=

−=

−= 

xx

dxxxA
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Tutorial Exercises 
 
Basic Integration 
 
 
Q1. Determine the following indefinite integrals: 
 

 (i).  dxx6     (ii).  dxx7  

 

 (iii).  + dxx )4( 3    (iv).  −+ dxxxx )74( 235  

 

 (v).  +− dyyy )721( 4   (vi).  +− dyyy )1147( 3  

 

 (vii).  + dttt )3( 43    (viii).  −+ dttt )73( 2/3  

 

 (ix).  + dx
x

x
3

3 1
   (x).  ++ dx

x
xx
2

2 1
 

 

 (xi).  dxxx 2    (xii).  









+ dx

x
3

1  

 

 (xiii).  + dxx )sin1(   (xiv).  + dxx )cos2(    . 

 
 
 
 
Integration by Substitution 
 
 
Q2. Using an appropriate substitution, determine the following indefinite integrals: 
 

 (i).  − dxxx 532 )4(3   (ii).  − dxxx 354 )42(10  

 

 (iii).  + dxxx 42 )13(6   (iv).  − dxxx 654 )83(  

 

 (v).  − dxxx 465 )105(3   (vi).  ++ dxxxx 832 )7()73(  

 

 (vii).  +++ dxxxx 832 )17()73(  (viii).  −
− dx

xx
x

42 )6(

62
 

 

 (ix).  ++
+ dx
xx

x
)63(

1
3

2

  (x).  −+
+ dx

xx
x

)542(

1
2

   . 
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Q3. Using an appropriate substitution, determine the following indefinite integrals: 
 

 (i).  dxx )3(sin    (ii).  − dxx )12(cos  

 

 (iii).  dxe x2     (iv).  − dxe x  

 

 (v).  − dxe x 13     (vi).  dxex x2

 

 

 (vii).  + dxxx )13(sin 2   (viii).  + dxxx )1(cos 32    . 

 
 
 
 
 
Integration by Parts 
 
 
 
Q4. Determine the following indefinite integrals using integration by parts: 
 

 (i).  dxex x     (ii).  dxex x2  

 

 (iii).  − dxex x     (iv).  dxxx )4(sin  

 

 (v).  dxxx )3(sin    (vi).  dxxx )2(cos  

 

 (vii).  dxex x2    (viii).  dxxx )2(cos2  

 

 (ix).  dxxx ln2    (x).  dxxx ln  

 
 
 
 
 
Q5. Determine 
 

     dxx )(ln  

 
 by writing it as 
 

     dxx )(ln.1  

 
 and using integration by parts where 
 
   )(ln)( xxf =   and  1)( =′ xg   . 
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Integration by Re-writing of the Integrand 
 
 
Q6. Determine the following definite integrals: 
 

 (i).  dxx )4(sin 2  

 

 (ii).  dxx )5(cos2  

 

 (iii).  ++
+ dx
xx

x
)3()1(

53
 

 

 (iv).  +−
− dx
xx

x
)4()2(

12
 

 

 (v).  +−
−+ dx

xx
xx

2

2

)2()1(

2155
  . 

 
 
 
 
Definite Integration 
 
 
Q7. Evaluate the following definite integrals: 
 

 (i). 
2

1
2 dxx     (ii).  +

2

1
)12( dxx  

 

 (iii). 
3

0

818 dxx    (iv).  −
+

1

1

2 )13( dxx  

 

 (v).  −
+

4

1

2 13 dxxx   (vi). 
1

0

2 dxe x  

 

 (vii).  −3

0
dxe x     (viii). 

1

0
sin dxx  

 

 (ix). 
2/

0
)2(cos

π
dxx    (x). 

2

1

1 dx
x

 

 

 (xi).  +

2

0 1

1 dx
x

   (xii). dxx )4(cos
8/

8/
+

−

π

π
  . 

 
 



 

33 
 

Q8. Evaluate the following definite integrals with the aid of a change of variable: 
 

 (i).  +

2

1
21

dx
x

x
 

 

 (ii).  +

2

1 21
dx

x
x

 

 

 (iii).  +

1

0
43

2

)31(
dx

x
x

 

 

 (iv).  +
4

0

29 dxxx   . 

 
 
 
 
 
 
Areas by Integration 
 
 
Q9. Determine the areas under the following curves for the ranges indicated: 
 
 (i). 3xy =   from  1=x   to  3=x  
 
 (ii). 24 xy −=   from  0=x   to  2=x   . 
 
 
 
 
Q10. (i). Sketch the curve )2()1( −−= xxxy  showing where it cuts the x-axis. 
 
 (ii). Determine the area enclosed by the curve )2()1( −−= xxxy  and the x-axis. 
 
 
 
 
Q11. In the following, determine where the curves intersect, sketch the curves and determine 

the area enclosed between the curves: 
 
 (i). 1+= xy   and  12 −= xy  
 
 (ii). xy 4=   and  )10( xxy −=  
 
 (iii). 32 += xy   and  12 2 −= xy   . 
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Answers to Tutorial Exercises  
 
A1. (i). Cx +7

7
1     (ii). Cx +8

8
1  

 
 (iii). Cxx ++ 44

4
1    (iv). Cxxx +−+ 3

3
746

6
1  

 
 (v). Cyyy ++− 5

5
72   (vi). Cyyy ++− 4

4
11227  

 
 (vii). Ctt ++ 5

5
34

4
1    (viii). Cttt +−+ 72

2
32/5

5
2  

 

 (ix). C
x

x +−
22

1
   (x). C

x
xx +−+ 1

ln  

 
 (xi). Cx +2/7

7
2     (xii). Cxx ++ 2/16  

 
 (xiii). Cxx +− cos    (xiv). Cxx ++ sin2   . 
 
 
 
 
A2. (i). Cx +− 63

6
1 )4(    (ii). Cx +− 45

4
1 )42(  

 
 (iii). Cx ++ 52

5
1 )13(   (iv). Cx +− 75

105
1 )83(  

 
 (v). Cx +− 56

50
1 )105(   (vi). Cxx ++ 93

9
1 )7(  

 

 (vii). Cxx +++ 93
9
1 )17(   (viii). C

xx
+

−
−

32 )6(3

1
 

 

 (ix). Cxx +++ 63ln 3
3
1  (x). Cxx +−+ 542ln 2

4
1   . 

 
 
 
 
A3. (i). Cx +− )3(cos3

1    (ii). Cx +− )12(sin2
1  

 
 (iii). Ce x +2

2
1     (iv). Ce x +− −  

 

 (v). Ce x +−13
3
1    (vi). Ce x +

2

2
1  

 
 (vii). Cx ++− )13(cos 2

6
1   (viii). Cx ++ )1(sin 3

3
1   . 
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A4. (i). Cex x +− )1(  
 
 (ii). Cex x +− 2

4
1 )12(  

 
 (iii). Cex x ++− −)1(  
 
 (iv). Cxxx +− ])4(cos4)4(sin[16

1  

 
 (v). Cxxx +− ])3(cos3)3(sin[9

1  

 
 (vi). Cxxx ++ ])2(sin2)2(cos[4

1  

 
 (vii). Cexx x ++− )22( 2  
 
 (vii). Cxxxx +−+ )2(sin)12()2(cos 2

4
1

2
1  

 
 (ix). Cxxx +− 3

9
13

3
1 ln  

 
 (x). Cxxx +− 2

4
12

2
1 ln  

 
 
 
A5. Cxxx +−ln  

 
 
 
A6. (i). Cxx +− ])8(sin[ 8

1
2
1  

 
 
 (ii). Cxx ++ ])10(sin[ 10

1
2
1  

 
 

 (iii). CxxCxx +++++++ 2)3()1(lnor3ln21ln  

 
 

 (iv). CxxCxx ++−+++− 2
3

2
1

)4()2(lnor4ln2ln 2
3

2
1  

 
 

 (v). Partial fractions:  
22

2

)2(

4

2

3

1

2

)2()1(

2155

+
+

+
+

−
=

+−
−+

xxxxx
xx

 

 

  Integral:  C
x

xx +
+

−++−
2

4
2ln31ln2  
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A7. (i). 3     (ii). 4 
 
 (iii). 39366    (iv). 4 
 
 (v). 9

335      (vi). 195.3)1( 2
2
1 ≈−e  

 
 (vii). 950.01 3 ≈− −e   (viii). 0.4597 
 
 (ix). 0     (x). 693.0)2(ln ≈  
 
 (xi). 099.1)3(ln ≈    (xii). 0.5    . 
 
 
 
 

A8. (i). 4581.0)(ln 2
5

2
1 ≈  (ii). 8219.025 ≈−  

 
 (iii). 03646.0192

7 ≈  (iv). 6667.323
98 ≈  

 
 
 
 
A9. (i). 20   (ii). 3

16  

 
 
 
 
A10. (i). 

 

 
 
 
 (ii). Integrate between  0  and  1  to give  0.25. 
  Integrate between  1  and  2  to give  −0.25. 
 
  Total area enclosed  =  0.25  +  0.25  =  0.5  . 
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A11. (i). 

y

x
O 2−1

y  =  x  +  1

y  =  x2 − 1

+1

−1

 

  Enclosed area  =  5.4)2( 2
9

2

1

2 ==+−−
dxxx  

 
 
 
 
 
 
 
 (ii). 

y

x
O 6

−1

y  =  4x

y  =  x ( 10  − x )

10

 

  Enclosed area  =  36)6(
6

0

2 =− dxxx  
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 (iii).  

y

x
O +2−2

y  =  x2 +  3
y  =  2x2 − 1

 

  Enclosed area  =  3
32

2

2

2 )4( =−
+

−
dxxx  

 
 


