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1. Introduction

The unit starts with a general introduction on some basic properties of integers and we define
widely used terms such as multiple and factor before presenting the division algorithm. We
then look at prime numbers and prime factorisation and describe methods for calculating
guantities such as the greatest common divisor and least common multiple of two integers. A
brief discussion on modular arithmetic follows to include alook at modulo 2 matrix arithmetic.
The unit closes with a discussion on number systems, focussing on the three main systems that
occur in computing applications; decimal (base 10), binary (base 2) and hexadecimal (base 16).
We describe how numbers are represented in each system and present methods for converting
between the three bases. A (very) brief discussion is also presented on conversions involving
other bases such as octal (base 8).

2. Numbers and Their Properties
This section provides some basic definitions and properties of the integers, i.e. the set

z={0, 1, +2, . . .},

and the related set of natural numbers (positive integers)

N={1 2,3, . . .}.

2.1. Multiples and Factors
Let mand nbeintegers. If n = km, for some integer k, then n is called a multiple of m.

Another way to express the relationship between mand n isto say that misafactor of n. A
factor of agiven number isanumber that divides exactly into that number. Alternatively we

say that nisdivisible by m, or mdivides n and write m| n. If mdoes not divide n we write m+ n.

Example 1
(i). 60 isamultiple of 3since 60 = 3 x 20
(i). 36isamultipleof 9since 36 = 9 x 4

(iii). 22isnot amultiple of 3 asthereis no integer which multiplied by 3 gives 22.

Example 2
(i). Thenumbers1l, 2, 3,4, 6 and 12 are al factors of 12 asthey each divide exactly into 12.

(ii). Thenumbers1l, 2, 4,5, 10 and 20 are al factors of 20 as they each divide exactly into 20.
(iii). Thenumber 3isnot afactor of 20 as 3 does not divide exactly into 20.



2.2. The Division Algorithm
Let aand b beintegerswith b > 0. Then there exist unique integers q and r such that

a=>bg+rwithO<r<hb.

The numbers g and r are called the quotient and remainder respectively when ais
divided by b.

Example 3
(i). Leea = 34andb = 6. Dividingaby bgivesthat q = 5Sandr = 4.

We can easily check thisiscorrectas, 34 = 6 x 5 + 4.

(ii). Leta = -34andb = 6. Whendividing aby b it might be tempting to write
that g = -5Sandr = —4. However, thiswould be incorrect asr must
be non-negative. Thecorrect answeris, q = -6 andr = 2. Wecan easly
check thisiscorrectas —34 = 6 x (-6) + 2.

2.3. Prime and Composite Numbers
A prime number is apositive integer, greater than 1, that isdivisible only by 1 and itself.

A composite number is a positive integer greater than 1 which isnot prime, i.e. it has at
least one factor other than 1 and itself.

Example 4

(>i). 7 isaprime number, sinceitisonly divisibleby 1 and 7.

(ii). 13isaprime number, sinceitisonly divisible by 1 and 13.

(iii). 4 isacomposite (not prime) number, sinceitisdivisible by 1, 2 and 4.

(iii). 12isacomposite (not prime) number, sinceitisdivisibleby 1, 2, 3, 4 and 6.

The prime numberslessthan 25 are 2, 3, 5, 7, 11, 13, 17, 19, 23.
The composite numbers lessthan 25 are: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24.

Notes

(a). Thenumbers 0 and 1 are neither prime nor composite.

(b). Theonly even prime number is 2.

(c). Inorder to determine whether a number, n, is primeit is sufficient to show that it
isnot divisible by any of the integers from 2 up to the square root of n.

(d). Thereareinfinitely many primes!



2.3.1. Prime Factors
The prime factors of a number are the prime numbers that divide that number exactly
with no remainder.

Example 5
Find all prime factors of 40.

Solution
Thefactorsof 40 are 1, 2, 4, 5, 8, 10, 20, 40. Only 2 and 5 are prime numbers and so the
prime factors of 40 are 2 and 5.

2.3.2. Prime Factorisation

The fundamental theorem of arithmetic states that every positive integer greater
than 1 is either prime or can be written as a product of prime numbersin a unique way
(except for the order of the factors). The process is known as prime factorisation.

Example 6
(>i). Find the prime factorisation of 368.

(ii).  Find the prime factorisation of 8085.

(ii).  Find the prime factorisation of 2381400.

Solution:
(>i). First note that 368 is an even number and can therefore be divided by 2, i.e.

368 2 x 184
2%X 2% 92
2%x 2x 2 x 46

=2X 2% 2 %X 2 X% 23.

These are al prime numbers and we have found the prime factorisation of 368.
In amore compact form we write, 368 = 2* x 23.



(ii).  First note that 8085 isdivisible by 5 asthe last digitisab5.

8085 = 5 x 1617 ( seebelow)
5x 3 x 539
5x 3x 7 x77

Ex 3Ix7Tx7x11

These are all prime numbers and we have found the prime factorisation of 8085.
In amore compact form we write, 8085 = 3 x 5 x 77 x 11.

" We have used the following result;
A number isdivisible 3 if the sum of itsdigitsisdivisible by 3.
Thedigit sumfor 1617is,1 + 6 + 1 + 7 = 15.

Since 15isdivisible by 3 the number 1617 is divisible by 3.
Wehave 1617 = 3 x 539.

(iii).  First note that 2381400 is divisible by 100 as the last two digits are both O.

2381400

100 x 23814 (" seebelow)

= 100 x 9 x 2646

= 100 x 9 x 9 x 294

= 100 x 9 x 9 x 3 x 98

= 100 x 9 x 9 x 3x 2x 49

= 100 Xx 9Xx 9Xx3x2x7x7

= 2X2X5X5X9Xx9Xx3%x2x7Tx7

= 2X2X5X5Xx3Xx3Xx3IXx3IX3IXx2xTXxXT

These are al prime numbers and we have found the prime factorisation of 2381400.
In amore compact form we write, 2381400 = 2° x 3° x 5% x 7°.

" We have used the following result:
A number isdivisible 9 if the sum of itsdigitsisdivisible by 9.
Thedigit sumfor 23814is,2 + 3 + 8 + 1 + 4 = 18.
Since 18 is divisible by 9 the number 23814 is divisible by 9.
We have 23814 = 9 x 2646.



2.3.3. Least Common Multiple (LCM)

The least common multiple (LCM) of two non-zero integers a and b, isthe smallest
positive integer that is divisible by both a and b.

Example 7
Find the LCM of 9 and 12.

Solution
There are several different approaches to calculating the LCM.

(-

(ii).

For “small” numberslike 9 and 12 the easiest method is to proceed as follows:
Write down several multiples of the smaller number:
Multiplesof Qare: 9, 18, 27, 36, 45, 54, . ..

Write down the multiples of the larger number until one of themisalso a
multiple of the smaller number:
Multiplesof 12 are: 12, 24, 36, . . .

Now, 36 isalso amultipleof 9and so Ilcm( 9, 12) = 36.

An alternative approach uses prime factorisation:
Write the prime factorisation of each number in exponential form:

9=3x3=23°

12 =2x2x3=2%x 3.
Multiply al the factors with the highest powers to obtain the LCM.
lem(9, 12) = 3% x 2% = 36.



2.3.4. Greatest Common Divisor (GCD)

The greatest common divisor (GCD) of two integers a and b, which are not both zero, is
the largest integer that divides exactly into both numbers. The GCD is also known as the
highest common factor (HCF).

Example 8
Find the GCD of 24 and 32.

Solution
There are several different approaches to calculating the GCD of two numbers.

(-

(ii).

For “small” numbers like 24 and 32 the easiest method isto proceed as follows:

Write down the factors of the smaller number, starting from the largest factor.
The factors of 24 are: 24,12,8,6, 3,2, 1.

Write down the factors of the larger number, starting from the largest factor.
The factors of 32 are: 32,16, 8,4, 2, 1.

Reading from left to right, the first factor of the smaller number that is also afactor of
the larger number is 8 and so 8 is defined to be the GCD of 24 and 32.

Hence, gcd (24, 32) = 8.

An aternative approach uses prime factorisation.

Determine the prime factorisation of each number:

24
32

2X2x2x%x3
2X2X2X%X2x%X2

List the factors common to both and multiply them together. The number 2 appears
three times in each prime factorisation and so

ged(24, 32) = 2x 2 x 2 = 8.



The methods in the previous example work well when the integers are relatively small
but are inefficient as the numbers become larger. A more systematic approach for
calculating the GCD of two positive integersis provided by the Euclidean algorithm,
which is named after the ancient Greek mathematician Euclid. We do not consider the
Euclidean algorithm in this unit.

2.3.5. Relatively Prime Integers
Two integers a and b are said to be relatively prime (or coprime or mutually prime) if
they have no common factors other than 1, i.e. gcd(a, b) = 1.

Example 9
(i).  Thenumbers 175 and 256 are relatively prime as gcd( 256, 175) = 1.

(ii). Two prime numbers, a and b, are alwaysrelatively primeas gcd(a, b) = 1.

Before moving on to look at modular arithmetic we present a useful theorem relating the
GCD and LCM.

Theorem
Let a and b be two positive integers (natural numbers) then

gcd(a, b) x lem(a, b) = a x b.

In words, the product of the LCM and GCD of two (or more) natural numbersis equal to
the product of the numbers.

Example 10

(i). gcd (24, 32) = 8 and Iem (24, 32) = 96.
gced (24, 32) x lem (24, 32) = 8 x 96 = 768.
Also, 24 x 32 = 768.

16 x 28 448

(ii). Ilem(16, 28) = 9cd(16. 28) =

= 112.




3. Modular Arithmetic

Modular arithmetic, or clock arithmetic asit is sometimes known, is a specia type of
arithmetic involving integers and features in branches of mathematics such as number
theory and abstract algebra. Modular arithmetic plays an important role in cryptography
where for example, it is used to reduce calculations involving large and very large
integers to calculations that involve smaller integers.

In modulo m arithmetic all integers are replaced by their remainders after division by m. For
example, if 8 isdivided by 6 the remainder is2. Here 6 is called the modulus and we write
8 (mod 6) = 2. We can perform this calculation for any number:

0(mod6)=0
1(mod6) =1
2(mod6) =2
3(mod6) =3
4 (mod 6) =4
5(mod6) =5
6 (mod6) =0
7(mod6) =1
8 (mod 6) = 2, etc.

Every time we reach amultiple of 6 we start counting from 0 again.
The set of integers modulo 6 is denoted: Zs=1{0,1, 2, 3, 4, 5}.
In general, the set of integers modulo misdefinedas. 7, ={0,1, 2,3,. . ., m—-1}.

We actually encounter modular arithmetic every day when we tell the time as clocks
work modulo 12 or 24 for hours and modulo 60 for minutes and seconds. Hence the
term clock arithmetic.

Modular arithmetic allows standard mathematical calculations such as addition,

subtraction and multiplication. Division by certain numbersis aso possible but is not
considered here. When the modulusis relatively small we can construct tables for arithmetic
operations. These tables are aso known as Cayley tables after the British mathematician
Arthur Cayley (1821 —1895). In the following sections we look at creating Cayley addition
and multiplication tables.



3.1. Addition Tables
To create the addition table for Z
e Write the numbersfrom 0 to m— 1inthe borders of thetable, i.e. in the top row and
leftmost column.
e Add these row and column numbers together to obtain their sum.
¢ Divide the sum by the modulus (m) to obtain the remainder which is the answer.
e Enter the answer at the intersection of the appropriate row and column.

Example 11
The processisillustrated to generate the bottom row (highlighted) of the addition table for

Zs. To obtain the entries in the bottom row, add 5 to each value that appears as a column
header. Write the result modulo 6 in the appropriate cell where the row and column intersect.

e (5+0)(mod6) = 5(mod6)
e (5+1)(mod6) = 6(mod6)
e (5+2)(mod6) = 7(mod6) =
e (5+ 3)(mod6) = 8(mod6) =
e (5+4)(mod6) = 9(mod6) = 3

e (5+ 5)(mod6) =10(mod6) = 4.

5
0
1
2

The remaining entries are generated in a similar manner to give the table:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
Addition Tablefor Zg

3.1.1. Additive Inverses
e Theadditive inverse of an integer aistheinteger b suchthat (a + b)(modm) = 0.

e Every integer in amodular arithmetic system has an additive inverse.
¢ Intheadditiontablefor Zsweseethat (4 + 2)(mod6) = 0 and so the additive
inverseof 4in Zgis2. Conversely, the additiveinverseof 2in Zgis4.



3.2. Multiplication Tables
To create the multiplication table for Z ..

e Writethe numbersfrom0to m — 1 in the borders of the table, i.e. in the top row and
leftmost column.

e Multiply each pair of row/column numbers together to obtain their product.
e Dividethe product by the modulus ( m) to obtain the remainder which is the answer.
e Enter the answer at the intersection of the appropriate row and column.

Example 12
The processisillustrated to generate the bottom row (highlighted) of the multiplication table

for Zs. To obtain the entriesin the bottom row, multiply each value that appears as a column
header by 5 and write the result modulo 6 in the appropriate cell where row and column intersect.

e (5x0)(mod6) = 0(mod6) =0
e (5x1)(mod6) =5(mod6) =5
e (5x2)(mod6) =10(mod6) = 4
e (5x3)(mod6) =15(mod6) = 3
e (5x4)(mod6) = 20(mod6) = 2
e (5x5)(mod6) = 25(mod6) =1

The remaining entries are generated in a similar manner to give the table:

X6

el el Ne] el
Ol | W NP O| =
AN OISR DNOIN
WOl W OoO|lw o|w
N B OIN MO
PIN W A OO W

N bW N =D

Note that alternative notation for the multiplication of two integers modulo mis a x, b

and represents the remainder on divisionof a x b by m. For example, 5 x, 4 = 2.

10



3.2.1. Multiplicative Inverses
e Leta, band mbe positiveintegers. The multiplicative inverse of anumber ais
defined to be the number b such that ab(modm) = 1.
e A multiplicative inverse will exist only if a and b are relatively prime.
e The number O does not have a multiplicative inverse. Division by zero is not defined.

e Weusually denote the inverse of an integer aas a™* athough sometextsuse, a.
e A number with amultiplicative inverse will containa‘1’ initsrow at the column

corresponding to the multiplicative inverse.

Example 13
Referring to the multiplication table above for Zs.

(i).  Theonly two numbers with a multiplicative inverse modulo 6 are 1 and 5,
i.e. the only two numbersin Z¢ that are relatively prime with 6.

(ii). Notethat 2 does not have a multiplicative inverse modulo 6 as there is no number
which when multiplied by 2 yields 1. In other words there is no solution ( x) to
the equation 2x(mod6) = 1. Also, 3 and 4 have no inverses modulo 6

Note: Inorder for each non-zero element of Z, to have amultiplicative inverse we must
have that mis aprime number. The previous example showed that as 6 is not prime not every
element in Zg hasan inverse.

Example 14
Construct a multiplication table for Zs and identify which elements have an inverse.

X5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

e As5isaprime number every non-zero element in Zs has amultiplicative inverse.
e Theinversesareasfollows: 1™ =1,2" =3,3"' =2and 4™ = 4.

11



3.3. Subtraction Tables
Wefirst of all look at how subtraction and in particular negative numbers are dealt with.

There are two possible outcomes of a subtraction:

A. The answer is positive
This case istreated exactly the same as before in that we divide the answer by the modulus and
retain the remainder.

Example 15
(>i). (8—2) (mod 9) =6 (mod 9) =6.

(ii). (12-5)(mod3)=7(mod3)=1.

(iii). (42—19) (mod 8) = 23 (mod 8) = 7.

B. The answer is negative
Here we must add multiples of the modulus, m, to obtain a positive integer between 0 and m.

Example 16
(>i). (2-5)(mod7)=—3(mod7) =4since—3+7=4.

(ii). (4—31) (mod5) =—27 (mod 5) = 3 since— 27 + (6 x 5) =3.

(iii). (11—-29) (mod 8) = — 18 (mod 8) = 6 since— 18 + (3 x 8) =6.

We can create a subtraction table, taking care to define the order of the subtraction, e.g.
Row — Column. The subtraction table (mod 6) for Zg is shown below.

N B W N - D
g |l WIN| L O|@
AW N R OO -
WINFP OO~
NI OO b~ W W
RO B~ W N &
OO | W N F| WO

12



4. Modulo 2 Matrix Arithmetic

We can now extend the concept of matrix multiplication, encountered earlier in the course, to
operations on matrices in which the elements are al 0 or 1 with addition and multiplication
carried out modulo 2.

Example 17

. 1 1] [0 1] _[140 141] 1 0
@ 1110 11 o] T l1e1 140/ "o 1|

. 1 00 1| [1x0+0x1 1x1+0x0| |0+0 1+0| |0 1
@19 1ll1 o] " |ox0+1x1 Ox1+1x0| ~ |o+1 o+o0| |1 ol

01 1|1 1 1 Ox1+1x0+1x1 Ox1+1x1+1x0 Ox1+1x1+1x1
(iii). 1 0 1|0 1 1| = |1x1+0x0+1x1 1x1+0x1+1x0 1x1+0x1+1x1].
1 1 0Ofl1 0 1 Ix1+1x0+0x1 1x1+1x1+0x0 1Ix1+1x1+0x1

0+0+1 0O0+1+0 O+1+1 11
=/1+0+1 1+0+0 1+0+1|=|0 1 O}.
1+0+0 1+1+0 1+1+0 10

. 1 1][1 1] [1x1+1x1 1x1+1x1] [1+1 1+1] [0 O
™11 1l 1 T axteaxt ixteaxt| 11 141 " lo ol

10
“) 110 Ix1+1x1+0x0 1x0+1x1+0x1
A% =
010 Ox1+1x1+0x0 Ox0+1x1+0x1

~ {1+1+0 0+1+ O} _ {O 1}

0+1+0 O0+1+0| |1 1|’

13



5. Boolean Algebra

Boolean Algebra was introduced by the English mathematician George Boole in 1854 and has
many practical applicationsin the physical sciencesincluding electrical engineering and
computing. Essentially it is algebra suited to two-valued computer logic and enables algebraic
manipulation of logical statements that occur in, for example, digital circuit theory.

A two element Boolean algebraisaset {0, 1} together with the binary operations sum and
product, and the unary operation, complementation (also called negation). The two states, 1 and O
are sometimes referred to as TRUE (T) and FALSE (F); ‘ON’ and ‘OFF’; *YES and ‘NO’;
‘HIGH’ and ‘LOW’, etc. Thelogical operators. sum, product and complementation are
respectively associated with the OR, AND, and NOT operatorsin propositional logic.

InBoolean algebral + 1 =1, just as‘ TRUE OR TRUE' resultsin TRUE in propositional logic.
Boolean addition corresponds to the logical OR function.

Consider the electric circuit shown in the schematic diagram below.

d

’d

For current to flow from A to B we can have either one switch CLOSED or both switches
CLOSED, i.eeweneed S, OR S, CLOSED.

In Boolean algebral x 1 =1, just as‘ TRUE AND TRUE' resultsin TRUE in propositional logic.
Boolean multiplication corresponds to the logical AND function.

Note that Boolean multiplication isidentical to standard arithmetic multiplication in that anything
multiplied by 0 yields 0, and anything multiplied by 1 remains unchanged.

Consider the electric circuit shown in the schematic diagram below:

ro yd e

S S

o B

For current to flow from A to B we need to have both switches CLOSED, i.e. we need
S, AND S, CLOSED.

14



6. Number Systems

This section introduces the binary, decimal and hexadecimal number systems that correspond to
the bases, 2, 10 and 16 respectively. A point to note here is that the number of digitsused by a
number system is equal to the base of the system.

6.1. Base 10 (Decimal)

We are all familiar with the decimal, or base-10, system for counting as we have been using it
most of our lives. In the base-10 system all numbers are represented by combinations of the
ten digits between 0 and 9. If we start counting from 0, in due course, we will reach the
number 9 and, as we have no unused single digits left, we increment the “tens” digit by one to
give the number “ten”, i.e. 10. Continuing to count we eventually reach 99 and, as we have no
unused double digits left, we add one to the “hundreds’ digit, giving 100.

Suppose for example, we continue to count until we reach the number 3472, say. We can
tabulate this information as follows:

Place-Holder 103 102 10t | 10°

Weight 1000 100 10 1
Decimal digit 3 4 7 2

In the decimal system the place-holder for each digit is a power of 10 so that moving from
right to left, in the table, corresponds to an increase in magnitude by a factor of 10 at every
step. To obtain the numerical value we multiply each decimal digit by its column’s weight and
sum the values, i.e.

2x10° + 7 x 10* + 4 x 10° + 3 x 10°
=2x1+7x10+ 4x100+ 3x1000= 2 + 70+ 400+ 3000 = 3472

This number is therefore made up from the sum of: 2 “ones’, 7 “tens’, 4 “hundreds’ and 3
“thousands’.

Sometimes decimal numbers are written with the subscript “ 10" to indicate a base 10 number,
eg. 3472,,.

15



6.2. Base 2 (Binary)

The binary, or base 2, number system uses the two digits 0 and 1 to represent numbersand is
of particular importance in computing. In acomputer’s memory elements can be in one of two
states, OFF or ON corresponding to the digits O and 1 respectively. These elements represent

one binary digit or bit. All internal processing and calculations in computing are donein binary.
We have seen that in base 10 every number can be written as a weighted sum of powers of 10.

In an analogous manner for base 2 we use a weighted sum of powers of 2 to express numbers.

The place-holder for each digit is therefore a power of 2 and moving from right to left corresponds
to an increase in magnitude by afactor of 2 at every step. For example, consider the following
table.

Place-Holder | 23 22 21 20
Weight 8 4 2 1
Binary digit 1 1 0 1

The binary number in the table, 1101 is sometimes written with the subscript “2” to indicate
that it isabase 2 number, i.e. 1101, .

To obtain the decimal representation of 1101, we multiply each binary digit by its column’s

weight and sum the values. Starting from the right,
Ix 2 +0x22+1x22+1x2°=1+0+ 4+ 8= 13.
The number is therefore made up from the sum of 1 “ones’, 1 “fours’ and 1 “eights’.

Hence, 1101, = 13,,.

16



6.3. Base 16 (Hexadecimal)
The hexadecimal (often called hex) or base 16 number system uses sixteen symbols,

0,1,2345,6,7,89A,B,C,D,E F,

to represent numbers. Thefirst ten digits are the same as in the decimal system while the
remaining six, A to F, correspond to the numbers from 10 to 15 respectively.

A computer carries out all its operationsin binary but as numbers become large the binary
representation requires increasingly more digits (0'sand 1's) and becomes difficult for humans
to read and write. For this reason computers often display information, such as memory
addresses, in hexadecimal as their format is more compact.

In base 16 we use aweighted sum of powers of 16 to express numbers. The place-holder for
each digit is therefore a power of 16 and moving from right to left corresponds to an increasein
magnitude by afactor of 16 at every step. Consider the table given below:

Place-Holder | 163 162 16* 16°

Weight 4096 256 16 1
Hex digit 1 2 B F

The hex number in the table, 12BF can be written with the subscript “16”, to indicate
that it isabase 16 number, i.e. 12BF.

To obtain the decimal representation of 12BF,, we multiply each hex digit by its column’s

weight, noting that B represents 11 and F corresponds to 15, and sum the values, i.e.

15 x 16° + 11 x 16" + 2 x 16° + 1 x 16% = 15 + 176 + 512 + 4096 = 4799.

Hence, 12BF,, = 4799,,.

17



6.4. Decimal to Binary to Hexadecimal Look-Up Table
The following table shows the decimal, 4-bit binary and hexadecimal representations of the
numbers 0 to 15. Y ou should familiarise yourself with these values.

Decimal | Binary | Hexadecimal
(Base 10) | (Base 2) (Base 16)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F




6.5. Converting Between Number Bases

In this section we look at converting integers between different number systems. While the
main focus will be on the bases most commonly used in computing, i.e. 2 (binary), 10
(decimal) and 16 (hex) we also present some results for other bases including octal (base 8).
The ability to convert back and forth between different basesis a fundamental skill required of
anyone working in the area of computing.

A base number converter can be found here http://www.kaagaard.dk/service/convert.ntm

6.5.1. Converting from Base 10 to Any Base

Converting from base 10 (decimal) to any other baseiseasy. Start with the decimal number to
be converted and repeatedly divide by the new base number retaining the remainder at each
step. We shall illustrate with some examples.

Example 18
(i). Base 10 (Decimal) to Base 2 (Binary)

Convert the decimal number 475 to a binary number.

Solution
Start by dividing 475 by 2 and keep the remainder. Repeat the process until we can no longer
perform adivision.

475/ 2 = 237, remainder 1
23712 =118, remainder 1
118/ 2 =59, remainder O
59/2 =29, remainder 1
29/2 =14, remainder 1
14/2=7, remainder O
712=3, remainder 1
3/2=1, remainder 1
1/2=0, remainder 1

Now read the binary number from the bottom to the top: 111011011.

Hence, 475,,=111011011,.

19



(ii). Base 10 (Decimal) to Base 16 (Hexadecimal)
Convert the decimal number 795 to a hex number.

Solution
Start by dividing 795 by 16 and keep the remainder. Repeat the process until we can no longer
perform adivision.

795/ 16 = 49, remainder 11 (= B in hex)
49/16=3, remainder 1
3/16=0, remainder 3

Now read the hex number from the bottom to the top: 31B.
Hence, 795,, = 31B ;.

(iii). Base 10 (Decimal) to Base 8 (Octal)
Convert the decimal number 5361 to an octal number.

Solution

Start by dividing 5361 by 8 and keep the remainder. Repeat the process until we can no

longer perform adivision. The octal number system is similar to decimal except that it only uses
the eight digitsfromOto 7.

5361/ 8 =670, remainder 1
670/ 8 =83, remainder 6
83/8 =10, remainder 3
10/8=1, remainder 2
1/8=0, remainder 1

Now read the octal number from the bottom to the top: 12361. Hence, 5361,, = 12361,.

Note: Octal used to be popular when computers employed 12-bit, 24-bit or 36-bit words for
dataand addressing. However, as modern computers all use 16-bit, 32-bit or 64-bit words
octal israrely used nowadays.
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(iv). Base 10 (Decimal) to Base 4 (Quaternary)
Convert the decimal number 679 to a base 4 number.

Start by dividing 679 by 4 and keep the remainder. Repeat the process until we can no longer
perform adivision.

679/ 4 =169, remainder 3
169/ 4 =42, remainder 1
42 /4 =10, remainder 2
10/ 4 =2, remainder 2
2/4=0, remainder 2

Now read the base 4 number from the bottom to the top: 22213.
Hence, 679,, = 22213,.

(v). Base 10 (Decimal) to Base 5 (Quinary)
Convert the decimal number 5361 to abase 5 number.

Solution
Start by dividing 5361 by 5 and keep the remainder. Repeat the process until we can no longer
perform adivision.

5361/5=1072, remainder 1

1072 /5= 214, remainder 2
214/5=42, remainder 4
42/5=8, remainder 2
8/5=1, remainder 3
1/5=0, remainder 1

Now read the base 5 number from the bottom to the top: 132421.
Hence, 5361,, = 132421, .
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6.5.2. Converting from Any Base to Base 10 (Decimal)
Converting to base 10 (decimal) from any other base is also fairly straightforward. We shall
consider two methods.

Method 1 — Place Value Method
The first method is based on the “place values’ of the digitsin the number being converted.

Let N, = X, X,X;. . .X, beabasebnumber with mdigits.

To convert to base 10 we calcul ate as follows:

N, = X,b® + x,, ,b" + x, ,b*>+. . .+ xb™*! [note the ordering!]

Method 2 — Shortcut Method
Alternatively, we can apply the following algorithm which is much faster to use as numbers
become larger.

Start with the leftmost digit and multiply it by the base, b.

Add the next digit and multiply by the base.

Repeat until the rightmost digit has been added (Do not multiply by the base).

Thisvaueisthe result.

Example 19
(i). Binary to Decimal

(a). Convert the binary number 11001 to a decimal number.

Solution

Place-Value Method

The place values of digitsin abinary number are powers of 2. To convert 11001 proceed as
follows:

11001 =1x 2> + 0x 2 + 0x 22 +1x 22 +1x 2*
=1+0+0+ 8+ 16 = 25.
Hence, 11001, = 25 .
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As base 2 only uses the numbers 0 and 1 this approach essentially involves adding the non-zero
place values together.

Shortcut Method
Alternatively, proceed as follows:

e Multiply the leftmost digit, 1, by the base, 2 giving 2.
Write 2 in the middle row of the second column.
e Add, 1+ 2=3andwrite 3 at the foot of the second column.

11 0 0 1
2

3

e Multiply 3 by the base, 2 to obtain 6.
e \Write 6 in the middle row of the third column.
e Add, 0+ 6=06andwrite 6 at thefoot of the third column.

110 0 1
2 6

3 6

Multiply 6 by the base, 2 to obtain 12.
e Write 12 in the middle row of the fourth column.
Add, 0+ 12 =12 and write 12 at the foot of the fourth column.

110 01
2 6 12

3 6 12

Multiply 12 by the base, 2 to obtain 24.
o Write 24 in the middle row of the fifth column.
Add the rightmost digit, 1 + 24 = 25 and write 25 at the foot of the fifth column.

110 01
2 6 1224

3 6 1225

e Therightmost digit has been added and so we stop here.

Hence, 11001, = 25,, asobtained earlier.
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(b). Convert the binary number 11011101 to a decimal number.

Solution
Place-Value Method
From the right, adding the place values, corresponding to the non-zero digits, in 11011101 gives:

1+0+4+8+16+ 0+ 64 + 128 = 221.

Hence, 11001, = 221,,.

Shortcut Method
Alternatively, we can write

110 11 1 0 1
2 6 1226 54 110 220

3 6 1327 55 110 221

Hence, 11011101, = 221,

The shortcut method becomes more efficient the larger the binary number. It isalso particularly
useful as the base number increases in size and thisis demonstrated in the following example.

(ii). Hexadecimal to Decimal
(a). Convert the hexadecimal number 3B2 to a decimal number.

Solution

Place-Value Method

The place values of digitsin a hex number are powers of 16. To convert 3B2 to its decimal
representation, starting from the right, multiply each digit in 3B2 by the appropriate power of 16.

2 x16° + 11 x 16* + 3 x 162
2x1+11x16 + 3 x 256
2 + 176 + 768 = 946.

382,

Hence, 3B2,; = 946,,.
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Shortcut Method

Alternatively, we can use the shortcut method where we multiply by 16.

3 B 2
48 944

59 946

Hence, 3B2,, = 946,,.

(b). Convert the hexadecima number 4BAE to a decimal number.

Solution
Place-Value Method

4BAE,, =14 x16° + 10 x 16" + 11 x 16° + 4 x 16°
=14 x 1+ 10 x 16 + 11 x 256 + 4 x 4096
= 19374,

Hence, 4BAE,, = 19374,,.

Shortcut Method
Alternatively, calculate as follows:

4 B A E
64 1200 19360

75 1210 19374

Hence, 4BAE,, = 19374,,.
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Example 20
We now apply the shortcut method to convert from bases, other than 2 and 16, to decimal.

(i). Octal (Base 8) to Decimal
Convert the octal number 7630 to a decimal number.

Solution
The place values of digitsin an octal number are powers of 8 and so we need to multiply by 8in
our calculations.

7 6 3 0
56 496 3992

62 499 3992

Hence, 7630, = 3992,,

(ii). Base 5 to Decimal
Convert the base 5 number 4102 to a decima number.

Solution
The place values of digitsin an base 5 number are powers of 5 and so we need to multiply by 5
in our calculations.

4 1 O 2
20 105 525

21 105 527

Hence, 4102, = 527, .
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(iii). Base 7 to Decimal
Convert the base 7 number 21643 to adecimal number.

Solution
The place values of digitsin abase 7 number are powers of 7 and so we need to multiply
by 7 in our calculations.

2 1 6 4 3
14 105 777 5467

15 111 781 5470

Hence, 21643, = 5470,

6.5.3. Converting from Hexadecimal to Binary

As hexadecimal isbase 16 = 2* and binary isbase 2 = 2" every digit in ahex number can
be replaced by its four bit binary equivalent.

Example 21
Convert the hexadecimal number 3C7D to a binary number.

Solution
Replace each hexadecimal number with its 4-bit binary equivalent.

Hex 3 C 7 D
Binary | 0011 | 1100 | 0111 | 1101

Hence, 3C7D,, =00111100 01111101, .



6.5.4. Converting from Binary to Hexadecimal

Example 22
Convert the binary number 1111 1100 0100 1110 to a hexadecimal number.

Solution
e Starting from the right-hand side-split the number into groups of four. If necessary pad
on the left with zeros to obtain a group of four.

e Convert each group of four to its decimal equivalent using the binary placeholder

weightings, i.e. 1, 2, 4 and 8. For example, in the table below, the group of four on the
right gives, 8 + 4+ 2+ 0= 14. Hence, 1110, = 14 ,.

e Convert each decima number to its hex equivalent, e.g. 14,, = E.

Binary | 1111 | 1100 | 0100 | 1110
Decimal | 15 12 4 14
Hex F C 4 E

Hence, 1111 1100 0100 1110, = FC4E.

Note: With alittle practice you will be able to omit the * convert to decimal’ step and convert
each group of four directly from binary to hex.

6.5.5. Conversions Between Other Bases
Here we present some examples of how the methods described earlier can be applied to
conversions between other bases.

Example 23
(). Octal to Binary

Asocta isbase 8 = 2° and binary isbase 2 = 2" every digit in aoctal number can be

replaced by its three bit binary equivalent.

Convert the octal number 761 to a binary number.
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Solution
Replace each octal digit with its 3-bit binary equivalent.

Octal 7 6 1
Binary | 111 | 110 | 001

Hence, 761, =111110001,.

(ii). Binary to Octal
Convert the binary number 1110101000101 to an octal number.

Solution
e Starting from the right hand side split the number into groups of three. If necessary pad
on the left with zeros to obtain a group of three.

e Convert each group of three to its octal equivalent using the binary placeholder
weightings, i.e. 1, 2 and 4. For example, on theright we have, 4+ 0+ 1 =5.
Hence, 101, = 5,

Binary | 001 | 110 | 101 | 000 | 101
Octal | 1 6 | 5| 0|5

Hence, 1110101000101, = 16505,.

(iii). Hexadecimal to Octal
Convert the hexadecimal number 8B6E to an octal number.

Solution
One method is to convert the hex number to binary and then convert from binary to octal.

e Write each hex digit asafour bit binary number.

Hex 8 B 6 E
Binary | 1000 | 1011 | 0110 | 1110

e Starting from the right, split the binary representation into groups of three. Pad the
leftmost triple with zerosif required.
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Binary | 001 | 000 | 101 | 101 | 101 | 110
Octal | 1 0 5 5 5 6

Hence, 8B6E,, = 105556,.

(iv). Octal to Hexadecimal
Convert the octal number 6473 to a hex number.

Solution
All we haveto do isreverse the process in the previous example.
e  Writeeach octal digit as athree bit binary number.

Octal | 6 4 7 3
Binary | 110 | 100 | 111 | 011

e Starting from the right, split the binary representation into groups of four. Pad the
leftmost group with zeros if required.

e Convert each binary number to its decimal equivalent, e.g. 1011, = 11,,.

e Convert each decimal number to its hex equivalent, e.g. 11,, = By,.

Binary | 1101 | 0011 | 1011
Decima | 13 3 11
Hex D 3 B

Hence, 6473, = D3B,;.



Tutorial Exercises

Factors, Multiples and Primes

Q1.

Q2.

Q3.

Q4.

Qs.

Q6.

Q7.

Find all the factors of the following integers.

(. 30 (). 100 (iii). 73

Determine the first three multiples of the following integers:

i. 7 (). 10 (). 131

Find the prime factorisation of:

(. 84 (ii). 585 (ii). 1040

v). 279 (vi). 23600 (vii). 4023,

Find al the prime factors of 49.

(iv). 84
(iv). 84
(iv). 188

If 63 and 112 are two multiples of a particular number, and the number isnot 1, what is

the number?

Find the LCM of 28 and 42.

It can be shown that the product of the LCM and GCD of two or more numbersis equal

to the product of the numbers. Usethisfact to answer the following:
(i). Determine the LCM of 64 and 92 if their GCD is 4.

(ii). Determinethe GCD of 78 and 102 if their LCM is 1326.
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Modular Arithmetic
Q8. Simplify each of the following:

@i. (3+4)mod5 (ii)). (8+9) mod 13
(iii). (9+3)mod 12 (iv). (7 +6)mod 12
v). (Bx3)ymod7 (vi). (2x10) mod 11
(vii). (5x6)mod 7 (viii). (12 x 11) mod 17

Q9. Simplify each of the following:
(i). (5-3)mod7 @ii). (3-5 mod7 (iii). (4-8)mod 12
(iv). (1-6)mod7 v). (B-49mod5 (vi). (1-10) mod 12

Q10. Construct the Cayley addition table for Zs.

Q11. (). Construct the Cayley multiplication table for Z 4.
(ii). InZsfind 27" and 37" if they exist. If not, explain why not.
(iii). Evaluatethefollowingin Z,:

@. (2x3)+3 ). 2-3-3 ©. (1 - 3) x 3

Q12. (). Construct the Cayley multiplication table for Z-.
(ii). InZ, find4*and 6 if they exist. If not, explain why not.
(iii). Evaluatethefollowingin Z;.
@. (1-6)x3 (b). Q-4 x 4.
Q13. Statethe property of mthat ensures that each element of Z,, has a multiplicative inverse.

Q14. Construct the subtraction table for Zs.

Q15. Construct Cayley tables for addition and multiplication modulo 2.



Modulo 2 Matrix Arithmetic
Q16. Where possible evaluate sums and products, using modulo 2 arithmetic, of the following
pairs of matrices.

111111
1 0[|1 0 1 00 1|01
(i) [ H } . |1 1 1/,|0 1 1|, (iii).[ H }
0O 1|1 1 01 1 0fj11
1111 01
Number Systems
Q17. Convert the following decimal numbersto their:
(i).  binary representations; (ii). hexadecimal representations.
(a. 39 (b). 73 (¢c). 100
(d). 359 (e). 111 ®. 733
(g). 1234 (h). 2012 G). 2017.
Q18. Convert the following binary numbersto their:
(i). decimal representations, (ii). hexadecimal representations
(a). 11111111 (b). 101011 (c). 111000111
(d). 1010010 (e). 111011100011 (f). 10011010101
(g). 100010001000 (h). 110100111.
Q19. Convert the following hexadecimal numbersto their:
(i). decimal representations, (ii). binary representations.
(a). BD3 (b). EEE (c). 32
(¢). 50 (d). ABC (e). BBC1
®. 2FC (g). AA.
Q20. Convert the following octal numbers to their:
(i). decimal representations, (ii).  binary representations,
(iii). hexadecimal representations.
(a). 7777 (b). 1234 (c). 1000.
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S1.

S2.

S3.

S4.

SS.

Answers/Solutions to Tutorial Questions

(@). Thefactorsof 30 are: 1, 2, 3, 5, 6, 10, 15, and 30.

(ii). Thefactorsof 100 are: 1, 2, 4, 5, 10, 20, 25, 50, 100.

(iii). Thefactorsof 73 are: 1 and 73 (73 is a prime number).
(iv). Thefactorsof 84 are: 1, 2,3 4,6, 7,12, 14, 21, 28, 41, 84.

(@). Thefirst three multiplesof 7 are: 7, 14 and 21.

(ii).  Thefirst three multiples of 10 are 10, 100 and 1000.
(iii). Thefirst three multiples of 131 are 131, 262 and 393.
(iv). Thefirst three multiples of 999 are 999, 1998 and 2997.

(>i). 84 =2x2x3x7 (ii). 585 =3x3x5x13
(iii). 1040 = 2 x 2x 2x 2 x 5% 13 (iv). 188 = 2x 2 x 47
v). 279 = 3x 3x 31

(vi). 23600 100 x 236

10 x 10 x 236

2Xx 5x 2x 5x 236
2x 5x 2x 5x 2x 118

2xXx 5x 2x 5Ex 2x 2x 59

3x 1341
3x 3x 447
3x 3x 3x 149

(vii). 4023

49 = 7x 7 . Theonly primefactor of 49is7.

Determine the prime factorisation of each number:
63 =3x3x7

112 =2 x 2x 2x%x 2x%x7

List the factors common to both and multiply them together.
Only 7 is common to both and so GCD(63, 112) = 7.
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S6.  Multiplesof 28 are: 28, 56, 84, 112, . ..
Multiplesof 42 are: 42, 84, 126, . . .
Hence, LCM(28, 42) = 84.

64 x 92 _ 5888

S7. (). lem(64,92)= = = 1472.
gcd (64, 92) 4
Gi). ged(78,102)= 0102 _ 796 _
lem(78,102) 1326
Modular Arithmetic
S8. (). 2 (ii). 4 (iii). O
V). 1 (vi). 9 (vii). 2
S9. (). 2 @ii). 5 (iii). 8
V). 4 (vi). 3
S10. Cayley Addition Tablefor Zs
+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
S11. (i) Cayley multiplication table for Z,.
X4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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(ii). Notethat 27" doesnot exist in Z, asin Z, thereis no x such that
2x = 1(mod4). Fromthetable 3™ = 3.

(ii). (a) (2% 3) + 3(mod4) = 9(mod4) =1

Mb). (2-3-3)(mod4) = -4(mod4) =0
(0. (1-3)x3(mod4) =-6(mod4) = 2

S12.  (i). Cayley multiplication table for Z-.

QN A W=D
[eleolieolNolNo] o) o) N
OO AW DNFP Ol
QW kR OB DN O
AR OINOW O W
W OoOIN R A~ O+
Nl B O W o1 O W
RIN W A0 O &

(i). Fromthetable4™ = 2 and 6™ = 6.
Gii). (@ (1 -6)x3(mod7) = -15(mod7) = 6

(b) (1-4)x4(mod7) = -12(mod7) = 2

S13.  Each element of Z,, hasamultiplicative inverse only if mis prime.

S14. Cayley subtraction table for Zs.

NP Ol R~ W

ROl W N W
Ol Bl W N &

WIN PP O -

W N =S
AW N PFR O @
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S15. Cayley addition table for Z:

+; 0 1
0 0 1
1 1 0

Cayley multiplication table for Z:

X3 0 1
0 0 0
1 0 1

Modulo 2 Matrix Arithmetic

) 1 0] [1 O} [1+1 0+0} {0 O}
S, @ || = =

1 1] [0+1 1+1 10

1 0[1 0}_[1><1+0><1 1><0+0><1}_{1 o}

1 1| |0x1+1x1 Ox0+1x1| |1 1

111+0 1 1|={1+0 1+1 1+1|=|1 O O
1111 01 |1+1 1+0 1+1] |[O 1 O

Ix1+1x0+1x1 1Ix1+1x1+1x0 1x1+1x1+1x1
Ix1+1x0+1x1 1Ix1+1x1+1x1 1x1+1x1+1x1

{111 1 1 1] [1+1 1+1 1+1] [0 0 O

1

1

1 Ix1+1x0+1x1 1Ix1+1x1+1x0 1Ix1+1x1+1x1

e

[ S S

Bk O Rk

o R Bk

[ S S
Il

1+0+1 1+1+0 1+1+1 0 01
=|1+0+1 1+1+0 1+1+1|=/0 O 1
1+0+1 1+1+0 1+1+1 0 01

(iii). Cannot add these matrices as they have different sizes.
0 1x0+0x1 1x1+0x1| [0 1

01
O{ }: O0x0+0x1 Ox1+0x1l|=|/0 O
0 1x0+0x1 1x1+0x1 01
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Number Systems

S17.

S18.

S19.

S20.

(i). Decimal to Binary

(a). 100111

(d). 101100111

(g). 10011010010
(ii). Decimal to Hexadecimal

(a). 27

(d). 167

(g). 4D2

(i). Binary to Decimal

(a). 255
(d). 82
(g). 2184
(ii). Binary to Hexadecimal
(a). FF (b).
(e). EE3 .

(i). Hexadecimal to Decimal

(a). 3027 (b).
(e). 2748 ®.
(ii). Hexadecimal to Binary
(a). 101111010011  (b).
(d). 1010000

®. 1011101111000001
(i). Octal to Decimal

(a). 409 (b).
(ii).  QOctal to Binary

(a). 111111111111 (b).
(iii). Octal to Hexadecimal
(a). FFF (b).

(b). 1001001
(¢e). 1101111
(h). 11111011100
(b). 49
(). 6F
(h). 7DC
(b). 43
(). 3811
(h). 423.
2B (. 1c7
4D5 (g). 888
3822 (©).
48065 (@).
111011101110
(). 101010111100
(¢). 1011111100
668
1010011100 (©).
29C (©).

(¢c). 1100100
(f). 1011011101
(- 11111100001.
(c). o4
(). 2DD
G). 7EL
(c). 455
. 1237
(d). 52
(h). 1A7.
50 (d). 80
764 (h). 170.
(o). 110010
(h). 10101010.
(¢c). 5l2.
1000000000 .
200.
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