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1. Introduction 

The unit starts with a general introduction on some basic properties of integers and we define  

widely used terms such as multiple and factor before presenting the division algorithm.  We  

then look at prime numbers and prime factorisation and describe methods for calculating  

quantities such as the greatest common divisor and least common multiple of two integers.  A  

brief discussion on modular arithmetic follows to include a look at modulo 2 matrix arithmetic.   

The unit closes with a discussion on number systems, focussing on the three main systems that  

occur in computing applications; decimal (base 10), binary (base 2) and hexadecimal (base 16).   

We describe how numbers are represented in each system and present methods for converting  

between the three bases.  A (very) brief discussion is also presented on conversions involving  

other bases such as octal (base 8). 

 

 

2. Numbers and Their Properties  

This section provides some basic definitions and properties of the integers, i.e. the set  

 

 = }...,2,1,0{ ±± ,  

 

and the related set of natural numbers (positive integers)  

 

 = }...,3,2,1{ .   

 

 

2.1. Multiples and Factors  

Let m and n be integers.  If mkn = , for some integer k, then n is called a multiple of m.   

Another way to express the relationship between m and n is to say that m is a factor of n.  A 
factor of a given number is a number that divides exactly into that number.  Alternatively we  

say that n is divisible by m, or m divides n and write m | n.  If m does not divide n we write m F n.   

 

Example 1 

(i).  60 is a multiple of 3 since 20360 ×=    

(i).  36 is a multiple of 9 since 4936 ×=    

(iii).  22 is not a multiple of 3 as there is no integer which multiplied by 3 gives 22. 

 

 

Example 2  

(i).  The numbers 1, 2, 3, 4, 6 and 12 are all factors of 12 as they each divide exactly into 12. 

(ii).  The numbers 1, 2, 4, 5, 10 and 20 are all factors of 20 as they each divide exactly into 20. 

(iii).  The number 3 is not a factor of 20 as 3 does not divide exactly into 20. 
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2.2. The Division Algorithm 

Let a and b be integers with 0>b .  Then there exist unique integers q and r such that  

 

rqba +=  with br <≤0 .  

   

The numbers q and r are called the quotient and remainder respectively when a is  

divided by b. 

 

Example 3  

(i).  Let 34=a  and 6=b .  Dividing a by b gives that 5=q  and 4=r .   

 We can easily check this is correct as, 45634 +×= .   

(ii).  Let 34−=a  and 6=b .  When dividing a by b it might be tempting to write  

that 5−=q  and 4−=r .  However, this would be incorrect as r must  

be non-negative.  The correct answer is, 6−=q  and 2=r .  We can easily  

check this is correct as 2)6(634 +−×=− .   

 

 

2.3. Prime and Composite Numbers 

A prime number is a positive integer, greater than 1, that is divisible only by 1 and itself.   

 

A composite number is a positive integer greater than 1 which is not prime, i.e. it has at  

least one factor other than 1 and itself.  

 

Example 4 

(i).  7 is a prime number, since it is only divisible by 1 and 7.  

(ii).  13 is a prime number, since it is only divisible by 1 and 13.  

(iii).  4 is a composite (not prime) number, since it is divisible by 1, 2 and 4.  

(iii).  12 is a composite (not prime) number, since it is divisible by 1, 2, 3, 4 and 6.  

 

The prime numbers less than 25 are 2, 3, 5, 7, 11, 13, 17, 19, 23.  

 

The composite numbers less than 25 are: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24. 

 

Notes 

(a).  The numbers 0 and 1 are neither prime nor composite.   

(b).  The only even prime number is 2.  

(c).  In order to determine whether a number, n, is prime it is sufficient to show that it  

is not divisible by any of the integers from 2 up to the square root of n.  

(d).  There are infinitely many primes!  
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2.3.1. Prime Factors  

The prime factors of a number are the prime numbers that divide that number exactly  

with no remainder.  

 

Example 5 

Find all prime factors of 40.  

 

Solution 

The factors of 40 are 1, 2, 4, 5, 8, 10, 20, 40.  Only 2 and 5 are prime numbers and so the  

prime factors of 40 are 2 and 5.  

 

 

2.3.2. Prime Factorisation 

The fundamental theorem of arithmetic states that every positive integer greater  

than 1 is either prime or can be written as a product of prime numbers in a unique way  

(except for the order of the factors).  The process is known as prime factorisation.  

 

 

Example 6 

(i).  Find the prime factorisation of 368.  

 

(ii).  Find the prime factorisation of 8085.  

 

(ii).  Find the prime factorisation of 2381400.  

 

 

Solution:   

(i).  First note that 368 is an even number and can therefore be divided by 2, i.e.  

 
368  1842 ×=   

9222 ××=

   46222 ×××=

  .232222 ××××=  

 

These are all prime numbers and we have found the prime factorisation of 368.   

In a more compact form we write, .232368 4 ×=  
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(ii).  First note that 8085 is divisible by 5 as the last digit is a 5.   

 

8085   16175 ×=  ( *see below )  
53935 ××=

   77735 ×××=

  117735 ××××=   
 

These are all prime numbers and we have found the prime factorisation of 8085.   

In a more compact form we write, .117538085 2 ×××=

 

 

 

 * We have used the following result: 

A number is divisible 3 if the sum of its digits is divisible by 3.  

The digit sum for 1617 is, .157161 =+++   

Since 15 is divisible by 3 the number 1617 is divisible by 3.   

We have .53931617 ×=  

 

 

(iii).  First note that 2381400 is divisible by 100 as the last two digits are both 0.    

 

2381400   23814100 ×=  ( ** see below )  
26469100 ××=

  29499100 ×××=   
98399100 ××××=   

492399100 ×××××=   
772399100 ××××××=   

7723995522 ×××××××××=   
772333335522 ×××××××××××=  

 

These are all prime numbers and we have found the prime factorisation of 2381400.   

In a more compact form we write, .75322381400 2253 ×××=

 

 

 

 ** We have used the following result: 

A number is divisible 9 if the sum of its digits is divisible by 9.  

The digit sum for 23814 is, .1841832 =++++   

Since 18 is divisible by 9 the number 23814 is divisible by 9.   

We have .2646923814 ×=  
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2.3.3. Least Common Multiple (LCM)  

The least common multiple (LCM) of two non-zero integers a and b, is the smallest  

positive integer that is divisible by both a and b.   

 

 

Example 7  

Find the LCM of 9 and 12.  

 

Solution  

There are several different approaches to calculating the LCM.  

 

(i).  For “small” numbers like 9 and 12 the easiest method is to proceed as follows:  

Write down several multiples of the smaller number: 

Multiples of 9 are:  9, 18, 27, 36, 45, 54, . . .  

 

Write down the multiples of the larger number until one of them is also a  

multiple of the smaller number:  

Multiples of 12 are: 12, 24, 36, . . .  

 

Now, 36 is also a multiple of 9 and so 36)12,9(lcm = .  

 

 

(ii).  An alternative approach uses prime factorisation: 

Write the prime factorisation of each number in exponential form: 
23339 =×=  

3232212 2 ×=××= .   

Multiply all the factors with the highest powers to obtain the LCM. 

3623)12,9(lcm 22 =×= .   



6 

 

2.3.4. Greatest Common Divisor (GCD)  

The greatest common divisor (GCD) of two integers a and b, which are not both zero, is  

the largest integer that divides exactly into both numbers.  The GCD is also known as the  

highest common factor (HCF).  

 

 

Example 8  

Find the GCD of 24 and 32.  

 

Solution  

There are several different approaches to calculating the GCD of two numbers.  

 

(i).  For “small” numbers like 24 and 32 the easiest method is to proceed as follows:  

 

Write down the factors of the smaller number, starting from the largest factor.   

The factors of 24 are:   24, 12, 8, 6, 3, 2, 1.  

 

Write down the factors of the larger number, starting from the largest factor.  

The factors of 32 are:   32, 16, 8, 4, 2, 1.  

 

Reading from left to right, the first factor of the smaller number that is also a factor of  

the larger number is 8 and so 8 is defined to be the GCD of 24 and 32. 

 

Hence, 8)32,24(gcd = .  

 

 

(ii).  An alternative approach uses prime factorisation.  

 

Determine the prime factorisation of each number: 

 

322224 ×××=   

2222232 ××××=   

 

List the factors common to both and multiply them together.  The number 2 appears  

three times in each prime factorisation and so  

 

8222)32,24(gcd =××= . 
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The methods in the previous example work well when the integers are relatively small  

but are inefficient as the numbers become larger.  A more systematic approach for  

calculating the GCD of two positive integers is provided by the Euclidean algorithm,  

which is named after the ancient Greek mathematician Euclid.  We do not consider the  

Euclidean algorithm in this unit.   

 

 

2.3.5. Relatively Prime Integers  

Two integers a and b are said to be relatively prime (or coprime or mutually prime) if  

they have no common factors other than 1, i.e. 1),(gcd =ba .   

 

Example 9  

(i). The numbers 175 and 256 are relatively prime as 1)175,256(gcd = .   

 

(ii).  Two prime numbers, a and b, are always relatively prime as 1),(gcd =ba .   

 

 

Before moving on to look at modular arithmetic we present a useful theorem relating the  

GCD and LCM.  

 

Theorem 

Let a and b be two positive integers (natural numbers) then  

 

bababa ×=× ),(lcm),(gcd . 

 

In words, the product of the LCM and GCD of two (or more) natural numbers is equal to  

the product of the numbers.  

 

 

Example 10  

(i).  8)32,24(gcd =  and 96)32,24(lcm = .  

 768968)32,24(lcm)32,24(gcd =×=× .  

 Also, 7683224 =× .   

 

 

(ii).  112
4

448

)28,16(gcd

2816
)28,16(lcm ==×= .  
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3. Modular Arithmetic 

Modular arithmetic, or clock arithmetic as it is sometimes known, is a special type of  

arithmetic involving integers and features in branches of mathematics such as number  

theory and abstract algebra.  Modular arithmetic plays an important role in cryptography  

where for example, it is used to reduce calculations involving large and very large  

integers to calculations that involve smaller integers.   

 

In modulo m arithmetic all integers are replaced by their remainders after division by m.  For  

example, if 8 is divided by 6 the remainder is 2.  Here 6 is called the modulus and we write 

8 (mod 6) = 2.  We can perform this calculation for any number: 

 

0 (mod 6) = 0  

1 (mod 6) = 1  

2 (mod 6) = 2  

3 (mod 6) = 3 

4 (mod 6) = 4 

5 (mod 6) = 5 

6 (mod 6) = 0 

7 (mod 6) = 1  

8 (mod 6) = 2, etc. 

 

Every time we reach a multiple of 6 we start counting from 0 again.   

 

The set of integers modulo 6 is denoted:  6 }5,4,3,2,1,0{= .   

 

In general, the set of integers modulo m is defined as:  m }1,...,3,2,1,0{ −= m .  

 

We actually encounter modular arithmetic every day when we tell the time as clocks  

work modulo 12 or 24 for hours and modulo 60 for minutes and seconds.  Hence the  

term clock arithmetic. 

 

Modular arithmetic allows standard mathematical calculations such as addition,  

subtraction and multiplication.  Division by certain numbers is also possible but is not  

considered here.  When the modulus is relatively small we can construct tables for arithmetic  

operations.  These tables are also known as Cayley tables after the British mathematician  

Arthur Cayley (1821 – 1895).  In the following sections we look at creating Cayley addition  

and multiplication tables.  
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3.1. Addition Tables  

To create the addition table for m: 

• Write the numbers from 0 to 1−m in the borders of the table, i.e. in the top row and  

leftmost column.  

• Add these row and column numbers together to obtain their sum. 

• Divide the sum by the modulus (m) to obtain the remainder which is the answer.  

• Enter the answer at the intersection of the appropriate row and column.  

 

 

Example 11  

The process is illustrated to generate the bottom row (highlighted) of the addition table for  

6.  To obtain the entries in the bottom row, add 5 to each value that appears as a column  

header.  Write the result modulo 6 in the appropriate cell where the row and column intersect.   

 

• 5)6mod(5)6mod()05( =≡+   

• 0)6mod(6)6mod()15( =≡+   

• 1)6mod(7)6mod()25( =≡+  

• 2)6mod(8)6mod()35( =≡+  

• 3)6mod(9)6mod()45( =≡+  

• 4)6mod(10)6mod()55( =≡+ .  

 

The remaining entries are generated in a similar manner to give the table: 

 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

 

Addition Table for 6 

 

3.1.1. Additive Inverses  

• The additive inverse of an integer a is the integer b such that 0)mod()( =+ mba .   

• Every integer in a modular arithmetic system has an additive inverse.  

• In the addition table for 6 we see that 0)6mod()24( =+  and so the additive  

inverse of 4 in 6 is 2.  Conversely, the additive inverse of 2 in 6 is 4.  
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3.2. Multiplication Tables  

To create the multiplication table for m: 

• Write the numbers from 0 to 1−m  in the borders of the table, i.e. in the top row and 
leftmost column.  

• Multiply each pair of row/column numbers together to obtain their product. 

• Divide the product by the modulus ( m ) to obtain the remainder which is the answer.  

• Enter the answer at the intersection of the appropriate row and column.  

 

 

Example 12  

The process is illustrated to generate the bottom row (highlighted) of the multiplication table  

for 6.  To obtain the entries in the bottom row, multiply each value that appears as a column  

header by 5 and write the result modulo 6 in the appropriate cell where row and column intersect.   

 

• 0)6mod(0)6mod()05( =≡×   

• 5)6mod(5)6mod()15( =≡×   

• 4)6mod(10)6mod()25( =≡×  

• 3)6mod(15)6mod()35( =≡×  

• 2)6mod(20)6mod()45( =≡×  

• 1)6mod(25)6mod()55( =≡×  

 

The remaining entries are generated in a similar manner to give the table: 

 

â6 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

 

Note that alternative notation for the multiplication of two integers modulo m is ba m×   

and represents the remainder on division of ba ×  by m.  For example, 245 6 =× .   
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3.2.1. Multiplicative Inverses  

• Let a, b and m be positive integers.  The multiplicative inverse of a number a is  

defined to be the number b such that 1)mod( =mba .   

• A multiplicative inverse will exist only if a and b are relatively prime.   

• The number 0 does not have a multiplicative inverse.  Division by zero is not defined.  

• We usually denote the inverse of an integer a as 1−a  although some texts use, a .   

• A number with a multiplicative inverse will contain a ‘1’ in its row at the column 

corresponding to the multiplicative inverse.  

 

 

Example 13 

Referring to the multiplication table above for 6.   

(i).  The only two numbers with a multiplicative inverse modulo 6 are 1 and 5,  

i.e. the only two numbers in 6  that are relatively prime with 6.  

 

(ii).  Note that 2 does not have a multiplicative inverse modulo 6 as there is no number  

which when multiplied by 2 yields 1.  In other words there is no solution ( x ) to  

the equation 1)6mod(2 =x .  Also, 3 and 4 have no inverses modulo 6   

 

 

Note:  In order for each non-zero element of m to have a multiplicative inverse we must  

have that m is a prime number.  The previous example showed that as 6 is not prime not every  

element in 6  has an inverse.   

 

 

Example 14  

Construct a multiplication table for 5 and identify which elements have an inverse.  

 

â5 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 

 

• As 5 is a prime number every non-zero element in 5 has a multiplicative inverse.   

• The inverses are as follows: 11 1 =− , 32 1 =− , 23 1 =−  and 44 1 =− .   
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3.3. Subtraction Tables  

We first of all look at how subtraction and in particular negative numbers are dealt with.   

 

There are two possible outcomes of a subtraction: 

 

A. The answer is positive 

This case is treated exactly the same as before in that we divide the answer by the modulus and  

retain the remainder.  

 

Example 15  

(i).  (8 – 2) (mod 9) = 6 (mod 9) = 6.   

 

(ii).  (12 – 5) (mod 3) = 7 (mod 3) = 1. 

 

(iii).  (42 – 19) (mod 8) = 23 (mod 8) = 7. 

 

 

B. The answer is negative 

Here we must add multiples of the modulus, m, to obtain a positive integer between 0 and m.  

 

Example 16  

(i). (2 – 5) (mod 7) = – 3 (mod 7) = 4 since – 3 + 7 = 4.  

 

(ii). (4 – 31) (mod 5) = – 27 (mod 5) = 3 since – 27 + (6 × 5) =3.  

 

(iii). (11 – 29) (mod 8) = – 18 (mod 8) = 6 since – 18 + (3 × 8) =6.  

 

 

We can create a subtraction table, taking care to define the order of the subtraction, e.g.  

Row – Column.  The subtraction table (mod 6) for 6 is shown below.  

 

-6 0 1 2 3 4 5 

0 0 5 4 3 2 1 

1 1 0 5 4 3 2 

2 2 1 0 5 4 3 

3 3 2 1 0 5 4 

4 4 3 2 1 0 5 

5 5 4 3 2 1 0 
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4. Modulo 2 Matrix Arithmetic  

We can now extend the concept of matrix multiplication, encountered earlier in the course, to  

operations on matrices in which the elements are all 0 or 1 with addition and multiplication  

carried out modulo 2.   

 

 

Example 17 

 

(i). 







=








++
++

=







+








10

01

0111

1101

01

10

11

11
. 

 

 

(ii). 







=








++
++

=







×+××+×
×+××+×

=















01

10

0010

0100

01101100

00111001

01

10

10

01
. 

 

 

(iii). 

















×+×+××+×+××+×+×
×+×+××+×+××+×+×
×+×+××+×+××+×+×

=
































101111001111100111

111011011011110011

111110011110110110

101

110

111

011

101

110

. 

 
















=

















++++++
++++++
++++++

=
001

010

011

011011001

101001101

110010100

. 

 

 

(iv). 







=








++
++

=







×+××+×
×+××+×

=















00

00

1111

1111

11111111

11111111

11

11

11

11
. 

 

 

(v). 


























10

11

01

010

011
 








×+×+××+×+×
×+×+××+×+×

=
101100001110

101101001111
 

 









=








++++
++++

=
11

10

010010

010011
.   
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5. Boolean Algebra 

Boolean Algebra was introduced by the English mathematician George Boole in 1854 and has  

many practical applications in the physical sciences including electrical engineering and  

computing.  Essentially it is algebra suited to two-valued computer logic and enables algebraic  

manipulation of logical statements that occur in, for example, digital circuit theory. 

 

A two element Boolean algebra is a set {0, 1} together with the binary operations sum and  

product, and the unary operation, complementation (also called negation).  The two states, 1 and 0  

are sometimes referred to as TRUE (T) and FALSE (F); ‘ON’ and ‘OFF’; ‘YES’ and ‘NO’;  

‘HIGH’ and ‘LOW’, etc.  The logical operators: sum, product and complementation are  

respectively associated with the OR, AND, and NOT operators in propositional logic.  

 

In Boolean algebra 1 + 1 = 1, just as ‘TRUE OR TRUE’ results in TRUE in propositional logic.   

Boolean addition corresponds to the logical OR function. 

 

Consider the electric circuit shown in the schematic diagram below. 

 

 

 

 

 

 

 

 

For current to flow from A to B we can have either one switch CLOSED or both switches  

CLOSED, i.e. we need 1S  OR 2S  CLOSED.   

 

In Boolean algebra 1 × 1 = 1, just as ‘TRUE AND TRUE’ results in TRUE in propositional logic.   

Boolean multiplication corresponds to the logical AND function.   

 

Note that Boolean multiplication is identical to standard arithmetic multiplication in that anything  

multiplied by 0 yields 0, and anything multiplied by 1 remains unchanged.   

 

Consider the electric circuit shown in the schematic diagram below: 

 

 

 

 

For current to flow from A to B we need to have both switches CLOSED, i.e. we need  

1S  AND 2S  CLOSED.   

A B S1 S2 

A B 

S1 

S2 
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6. Number Systems 

This section introduces the binary, decimal and hexadecimal number systems that correspond to  

the bases, 2, 10 and 16 respectively.  A point to note here is that the number of digits used by a  

number system is equal to the base of the system.   

 

 

6.1. Base 10 (Decimal) 

We are all familiar with the decimal, or base-10, system for counting as we have been using it  

most of our lives.  In the base-10 system all numbers are represented by combinations of the  

ten digits between 0 and 9.  If we start counting from 0, in due course, we will reach the  

number 9 and, as we have no unused single digits left, we increment the “tens” digit by one to  

give the number “ten”, i.e. 10.  Continuing to count we eventually reach 99 and, as we have no  

unused double digits left, we add one to the “hundreds” digit, giving 100.   

 

Suppose for example, we continue to count until we reach the number 3472, say.  We can  

tabulate this information as follows:  

 

 

Place-Holder 310  210  110  010  

Weight 1000 100 10 1 

Decimal digit 3 4 7 2 

 

 

In the decimal system the place-holder for each digit is a power of 10 so that moving from  

right to left, in the table, corresponds to an increase in magnitude by a factor of 10 at every  

step.  To obtain the numerical value we multiply each decimal digit by its column’s weight and  

sum the values, i.e.  

 
3210 103104107102 ×+×+×+×  

3472300040070210003100410712 =+++=×+×+×+×=  

 

This number is therefore made up from the sum of: 2 “ones”, 7 “tens”, 4 “hundreds” and 3  

“thousands”. 

 

Sometimes decimal numbers are written with the subscript “10” to indicate a base 10 number,  

e.g. 103472 .   
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6.2. Base 2 (Binary) 

The binary, or base 2, number system uses the two digits 0 and 1 to represent numbers and is  

of particular importance in computing.  In a computer’s memory elements can be in one of two  

states, OFF or ON corresponding to the digits 0 and 1 respectively.  These elements represent  

one binary digit or bit.  All internal processing and calculations in computing are done in binary.  
We have seen that in base 10 every number can be written as a weighted sum of powers of 10.   

In an analogous manner for base 2 we use a weighted sum of powers of 2 to express numbers.   

The place-holder for each digit is therefore a power of 2 and moving from right to left corresponds  

to an increase in magnitude by a factor of 2 at every step.  For example, consider the following  

table.  

 

 

Place-Holder 32  22  12  02  

Weight  8 4 2 1 

Binary digit 1 1 0 1 

 

 

The binary number in the table, 1101 is sometimes written with the subscript “2” to indicate  

that it is a base 2 number, i.e. 21101 .   

 

To obtain the decimal representation of 21101  we multiply each binary digit by its column’s  

weight and sum the values.  Starting from the right,  

 

13840121212021 3210 =+++=×+×+×+× . 

 

The number is therefore made up from the sum of 1 “ones”, 1 “fours” and 1 “eights”. 

 

Hence, 102 131101 = .   
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6.3. Base 16 (Hexadecimal) 

The hexadecimal (often called hex) or base 16 number system uses sixteen symbols,  

 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,  

 

to represent numbers.  The first ten digits are the same as in the decimal system while the  

remaining six, A to F, correspond to the numbers from 10 to 15 respectively.   

 

A computer carries out all its operations in binary but as numbers become large the binary  

representation requires increasingly more digits (0’s and 1’s) and becomes difficult for humans  

to read and write.  For this reason computers often display information, such as memory  

addresses, in hexadecimal as their format is more compact.   

 

In base 16 we use a weighted sum of powers of 16 to express numbers.  The place-holder for  

each digit is therefore a power of 16 and moving from right to left corresponds to an increase in  

magnitude by a factor of 16 at every step.  Consider the table given below:  

 

Place-Holder 316  216  116  016  

Weight 4096 256 16 1 

Hex digit 1 2 B F 

 

The hex number in the table, 12BF can be written with the subscript “16”, to indicate  

that it is a base 16 number, i.e. 16BF12 .   

 

To obtain the decimal representation of 16BF12  we multiply each hex digit by its column’s  

weight, noting that B represents 11 and F corresponds to 15, and sum the values, i.e.  

 

479940965121761516116216111615 3210 =+++=×+×+×+× . 

 

Hence, 1016 4799BF12 = .   
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6.4. Decimal to Binary to Hexadecimal Look-Up Table 

The following table shows the decimal, 4-bit binary and hexadecimal representations of the  

numbers 0 to 15.  You should familiarise yourself with these values. 

 

Decimal 

(Base 10)

Binary 

(Base 2)

Hexadecimal

(Base 16) 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 
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6.5. Converting Between Number Bases  

In this section we look at converting integers between different number systems.  While the  

main focus will be on the bases most commonly used in computing, i.e. 2 (binary), 10  

(decimal) and 16 (hex) we also present some results for other bases including octal (base 8).   

The ability to convert back and forth between different bases is a fundamental skill required of  

anyone working in the area of computing.   

 

A base number converter can be found here http://www.kaagaard.dk/service/convert.htm 

 

6.5.1. Converting from Base 10 to Any Base  

Converting from base 10 (decimal) to any other base is easy.  Start with the decimal number to  

be converted and repeatedly divide by the new base number retaining the remainder at each  

step.  We shall illustrate with some examples. 

 

Example 18  

(i). Base 10 (Decimal) to Base 2 (Binary)  

Convert the decimal number 475 to a binary number.  

 

Solution 

Start by dividing 475 by 2 and keep the remainder.  Repeat the process until we can no longer  

perform a division.  

 

475 / 2 = 237,   remainder 1  

237 / 2 = 118,   remainder 1  

118 / 2 = 59,   remainder 0  

59 / 2 = 29,   remainder 1  

29 / 2 = 14,  remainder 1 

14 / 2 = 7,   remainder 0 

7 / 2 = 3,   remainder 1 

3 / 2 = 1,   remainder 1 

1 / 2 = 0,   remainder 1 

 

Now read the binary number from the bottom to the top: 111011011.   

 

Hence, 210 011 11011 1475 = .   
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(ii). Base 10 (Decimal) to Base 16 (Hexadecimal)  

Convert the decimal number 795 to a hex number.  

 

Solution 

Start by dividing 795 by 16 and keep the remainder.  Repeat the process until we can no longer  

perform a division.  

 

795 / 16 = 49,   remainder 11 (= B in hex ) 

49 / 16 = 3,   remainder 1  

3 / 16 = 0,   remainder 3  

 

Now read the hex number from the bottom to the top: 31B.   

Hence, 1610 B31795 = .   

 

 

(iii). Base 10 (Decimal) to Base 8 (Octal)  

Convert the decimal number 5361 to an octal number.   

 

Solution 

Start by dividing 5361 by 8 and keep the remainder.  Repeat the process until we can no  

longer perform a division.  The octal number system is similar to decimal except that it only uses  

the eight digits from 0 to 7. 

 

5361 / 8 = 670,  remainder 1  

670 / 8 = 83,   remainder 6  

83 / 8 = 10,   remainder 3  

10 / 8 = 1,   remainder 2  

1 / 8 = 0,   remainder 1  

 

Now read the octal number from the bottom to the top: 12361.  Hence, 810 123615361 = .   

 

Note: Octal used to be popular when computers employed 12-bit, 24-bit or 36-bit words for  

data and addressing.  However, as modern computers all use 16-bit, 32-bit or 64-bit words  

octal is rarely used nowadays.   
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(iv). Base 10 (Decimal) to Base 4 (Quaternary)  

Convert the decimal number 679 to a base 4 number.  

 

Start by dividing 679 by 4 and keep the remainder.  Repeat the process until we can no longer  

perform a division.  

 

679 / 4 = 169,   remainder 3  

169 / 4 = 42,   remainder 1  

42 / 4 = 10,   remainder 2  

10 / 4 = 2,   remainder 2  

2 / 4 = 0,   remainder 2  

 

Now read the base 4 number from the bottom to the top: 22213.   

Hence, 410 22213679 = .   

 

 

(v). Base 10 (Decimal) to Base 5 (Quinary)  

Convert the decimal number 5361 to a base 5 number.  

 

Solution 

Start by dividing 5361 by 5 and keep the remainder.  Repeat the process until we can no longer  

perform a division.  

 

5361 / 5 = 1072,  remainder 1  

1072 / 5 = 214,  remainder 2  

214 / 5 = 42,   remainder 4  

42 / 5 = 8,   remainder 2  

8 / 5 = 1,   remainder 3  

1 / 5 = 0,   remainder 1  

 

Now read the base 5 number from the bottom to the top: 132421.   

Hence, 510 1324215361 = .  
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6.5.2. Converting from Any Base to Base 10 (Decimal)   

Converting to base 10 (decimal) from any other base is also fairly straightforward.  We shall  

consider two methods.  

 

 

Method 1 – Place Value Method 

The first method is based on the “place values” of the digits in the number being converted. 

 

Let mb xxxxN ...321=  be a base b number with m digits.  

 

To convert to base 10 we calculate as follows:  

 
1

1
2

2
1

1
0

10 ... −
−− ++++= m

mmm bxbxbxbxN   [note the ordering!] 

 

 

Method 2 – Shortcut Method 

Alternatively, we can apply the following algorithm which is much faster to use as numbers  

become larger.   

 

• Start with the leftmost digit and multiply it by the base, b. 
 

• Add the next digit and multiply by the base. 
 

• Repeat until the rightmost digit has been added (Do not multiply by the base).  
 

• This value is the result.   

 

 

Example 19  

(i). Binary to Decimal 

(a).  Convert the binary number 11001 to a decimal number. 

 

Solution 

Place-Value Method 

The place values of digits in a binary number are powers of 2.  To convert 11001 proceed as  

follows: 

 
43210 212120202111001 ×+×+×+×+×=   

 25168001 =++++= .   

Hence, 102 2511001 = .   
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As base 2 only uses the numbers 0 and 1 this approach essentially involves adding the non-zero  

place values together.  

 

Shortcut Method 

Alternatively, proceed as follows:  

 

• Multiply the leftmost digit, 1, by the base, 2 giving 2.   
• Write 2 in the middle row of the second column.   
• Add, 1 + 2 = 3 and write 3 at the foot of the second column.   

  3

2

10011

 

 

• Multiply 3 by the base, 2 to obtain 6. 
• Write 6 in the middle row of the third column.  
• Add, 0 + 6 = 6 and write 6 at the foot of the third column.  

  63

62

10011

 

 

• Multiply 6 by the base, 2 to obtain 12. 
• Write 12 in the middle row of the fourth column.  
• Add, 0 + 12 = 12 and write 12 at the foot of the fourth column.  

  1263

1262

10011

 

 

• Multiply 12 by the base, 2 to obtain 24. 
• Write 24 in the middle row of the fifth column.  
• Add the rightmost digit, 1 + 24 = 25 and write 25 at the foot of the fifth column.  

  251263

241262

10011

 

 

• The rightmost digit has been added and so we stop here. 

 

Hence, 102 2511001 =  as obtained earlier.  
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(b). Convert the binary number 11011101 to a decimal number. 

 

Solution 

Place-Value Method 

From the right, adding the place values, corresponding to the non-zero digits, in 11011101 gives:  

 

  221128640168401 =+++++++ .   

 

Hence, 102 22111001 = .   

 

 

Shortcut Method 

Alternatively, we can write  

 

  22111055271363

22011054261262

10111011

 

 

Hence, 102 22111011101 =  

 

The shortcut method becomes more efficient the larger the binary number.  It is also particularly  

useful as the base number increases in size and this is demonstrated in the following example. 

 

 

(ii). Hexadecimal to Decimal 

(a). Convert the hexadecimal number 3B2 to a decimal number. 

 

Solution  

Place-Value Method 

The place values of digits in a hex number are powers of 16.  To convert 3B2 to its decimal  

representation, starting from the right, multiply each digit in 3B2 by the appropriate power of 16. 

 

 162B3   210 1631611162 ×+×+×=   

  2563161112 ×+×+×=  

  9467681762 =++= .   

 

 Hence, 1016 9462B3 = .  
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Shortcut Method 

Alternatively, we can use the shortcut method where we multiply by 16. 

 

  94659

94448

2B3

 

 

Hence, 1016 946B23 = .  

 

 

(b).  Convert the hexadecimal number 4BAE to a decimal number. 

 

Solution  

Place-Value Method 

 16BAE4   3210 164161116101614 ×+×+×+×=   

  40964256111610114 ×+×+×+×=  

  19374= .   

Hence, 1016 19374BAE4 = .  

 

 

Shortcut Method 

Alternatively, calculate as follows: 

 

 

  19374121075

19360120064

EAB4

 

 

Hence, 1016 19374BAE4 = . 
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Example 20  

We now apply the shortcut method to convert from bases, other than 2 and 16, to decimal. 

 

(i). Octal (Base 8) to Decimal 

Convert the octal number 7630 to a decimal number. 

 

Solution  

The place values of digits in an octal number are powers of 8 and so we need to multiply by 8 in  

our calculations. 

 

  399249962

399249656

0367

 

 

Hence, 108 39927630 =  

 

 

(ii). Base 5 to Decimal 

Convert the base 5 number 4102 to a decimal number. 

 

Solution 

The place values of digits in an base 5 number are powers of 5 and so we need to multiply by 5  

in our calculations. 

 

  52710521

52510520

2014

  

 

Hence, 105 5274102 = . 
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(iii). Base 7 to Decimal 

Convert the base 7 number 21643 to a decimal number. 

 

Solution 

The place values of digits in a base 7 number are powers of 7 and so we need to multiply  

by 7 in our calculations. 

 

  547078111115

546777710514

34612

 

 

Hence, 107 547021643 =  

 

 

6.5.3. Converting from Hexadecimal to Binary  

As hexadecimal is base 4216 =  and binary is base 122 =  every digit in a hex number can  

be replaced by its four bit binary equivalent. 

 

Example 21  

Convert the hexadecimal number 3C7D to a binary number. 

 

Solution 
Replace each hexadecimal number with its 4-bit binary equivalent. 

 

Hex 3 C 7 D 

Binary 0011 1100 0111 1101

 

Hence, 216 1101110111000011C7D3 = .  
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6.5.4. Converting from Binary to Hexadecimal 

Example 22 

Convert the binary number 1111 1100 0100 1110 to a hexadecimal number.  

 

Solution 

• Starting from the right-hand side-split the number into groups of four.  If necessary pad  

on the left with zeros to obtain a group of four.   

 

• Convert each group of four to its decimal equivalent using the binary placeholder  

weightings, i.e. 1, 2, 4 and 8.  For example, in the table below, the group of four on the  

right gives, 8 + 4 + 2 + 0 = 14.  Hence, 102 141110 = .   

 

• Convert each decimal number to its hex equivalent, e.g. 1610 E14 = .  

 

Binary 1111 1100 0100 1110

Decimal 15 12 4 14 

Hex F C 4 E 

 

Hence, 1111 1100 0100 11102 = 16E4FC .   

 

Note: With a little practice you will be able to omit the ‘convert to decimal’ step and convert  

each group of four directly from binary to hex.   

 

 

6.5.5. Conversions Between Other Bases  

Here we present some examples of how the methods described earlier can be applied to  

conversions between other bases.   

 

Example 23  

(i). Octal to Binary  

As octal is base 328 =  and binary is base 122 =  every digit in a octal number can be  

replaced by its three bit binary equivalent. 

 

Convert the octal number 761 to a binary number. 
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Solution 

Replace each octal digit with its 3-bit binary equivalent. 

 

Octal 7 6 1 

Binary 111 110 001

 

Hence, 28 111100011761 = .  

 

 

(ii). Binary to Octal  

Convert the binary number 1110101000101 to an octal number.  

 

Solution 

• Starting from the right hand side split the number into groups of three.  If necessary pad  

on the left with zeros to obtain a group of three.   

 

• Convert each group of three to its octal equivalent using the binary placeholder  

weightings, i.e. 1, 2 and 4.  For example, on the right we have, 4 + 0 + 1 = 5.   

Hence, 82 5101 =  

 

Binary 001 110 101 000 101

Octal 1 6 5 0 5 

 

Hence, 11101010001012 816505= .   

 

 

(iii). Hexadecimal to Octal  

Convert the hexadecimal number 8B6E to an octal number.  

 

Solution  

One method is to convert the hex number to binary and then convert from binary to octal. 

 

• Write each hex digit as a four bit binary number.  

 

Hex 8 B 6 E 

Binary 1000 1011 0110 1110

 

• Starting from the right, split the binary representation into groups of three.  Pad the  

leftmost triple with zeros if required. 
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Binary 001 000 101 101 101 110

Octal 1 0 5 5 5 6 

 

Hence, 816 105556E6B8 = .   

 

 

(iv). Octal to Hexadecimal  

Convert the octal number 6473 to a hex number. 

 

Solution  

All we have to do is reverse the process in the previous example.   

• Write each octal digit as a three bit binary number.  

 

Octal 6 4 7 3 

Binary 110 100 111 011

 

• Starting from the right, split the binary representation into groups of four.  Pad the  

leftmost group with zeros if required. 

 

• Convert each binary number to its decimal equivalent, e.g. 102 111011 = .  

• Convert each decimal number to its hex equivalent, e.g. 1610 B11 = .  

 

Binary 1101 0011 1011

Decimal 13 3 11 

Hex D 3 B 

 

 Hence, 168 B3D6473 = .  
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Tutorial Exercises 

Factors, Multiples and Primes 

Q1.  Find all the factors of the following integers: 

 

  (i).  30  (ii). 100   (iii).  73   (iv).  84. 

 

 

Q2.  Determine the first three multiples of the following integers:  

 

(i).  7  (ii).  10   (iii).  131   (iv).  84. 

 

 

Q3.  Find the prime factorisation of: 

 

(i). 84  (ii).  585  (iii).  1040    (iv).  188  

 

(v).  279   (vi).  23600   (vii).  4023.  

 

 

Q4.  Find all the prime factors of 49.  

 

 

Q5.  If 63 and 112 are two multiples of a particular number, and the number is not 1, what is  

the number?   

 

 

Q6.  Find the LCM of 28 and 42.   

 

 

Q7.  It can be shown that the product of the LCM and GCD of two or more numbers is equal  

to the product of the numbers.  Use this fact to answer the following: 

 

(i).  Determine the LCM of 64 and 92 if their GCD is 4. 

 

(ii).  Determine the GCD of 78 and 102 if their LCM is 1326. 
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Modular Arithmetic 

Q8.  Simplify each of the following: 

(i).  (3 + 4) mod 5      (ii). (8 + 9) mod 13  

(iii).  (9 + 3) mod 12      (iv). (7 + 6) mod 12   

(v).  (5 ä 3) mod 7      (vi). (2 ä 10) mod 11  

(vii). (5 ä 6) mod 7      (viii). (12 ä 11) mod 17  

 

 

Q9.  Simplify each of the following: 

(i).  (5 - 3) mod 7  (ii).  (3 - 5) mod 7  (iii).  (4 - 8) mod 12 

(iv).  (1 - 6) mod 7  (v).  (3 - 4) mod 5  (vi).  (1 - 10) mod 12 

 

 

Q10.  Construct the Cayley addition table for 5. 

 

 

Q11.  (i).  Construct the Cayley multiplication table for 4. 

 

 (ii).  In 4 find 12 −  and 13 −  if they exist.  If not, explain why not. 

 

(iii).   Evaluate the following in 4: 

(a).  3)32( +×    (b).   332 −−   (c). 3)31( ×−  

 

 

Q12.  (i).  Construct the Cayley multiplication table for 7. 

 

 (ii).  In 7, find 4-1 and 6-1 if they exist.  If not, explain why not. 

 

 (iii).  Evaluate the following in 7. 

(a).  3)61( ×−    (b).   4)41( ×− .   

 

 

Q13.   State the property of m that ensures that each element of m has a multiplicative inverse. 

 

 

Q14.   Construct the subtraction table for 5.  

 

 

Q15.   Construct Cayley tables for addition and multiplication modulo 2. 
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Modulo 2 Matrix Arithmetic  

Q16.   Where possible evaluate sums and products, using modulo 2 arithmetic, of the following  

pairs of matrices. 

(i).  















11

01
,

10

01
 (ii). 

































101

110

111

,

111

111

111

,  (iii). 















11

10
,

0110

1001
.  

 

 

Number Systems 

Q17. Convert the following decimal numbers to their:  

 (i).  binary representations;   (ii).  hexadecimal representations. 

 

(a).  39   (b).  73   (c).  100  

(d).  359    (e). 111   (f).  733  

(g).  1234    (h).  2012    (j).  2017.  

 

 

Q18.  Convert the following binary numbers to their: 

 (i). decimal representations;   (ii). hexadecimal representations 

 

  (a).  11111111 (b).  101011  (c). 111000111  

  (d).  1010010   (e).  111011100011 (f). 10011010101  

  (g).  100010001000  (h).  110100111.  

 

 

Q19.  Convert the following hexadecimal numbers to their: 

 

 (i). decimal representations;   (ii). binary representations.  

 

   (a).  BD3 (b). EEE  (c).  32  

   (c).  50  (d). ABC   (e).  BBC1  

   (f). 2FC (g). AA.  

 

 

Q20.  Convert the following octal numbers to their: 

 

 (i). decimal representations;  (ii). binary representations;  

 (iii).  hexadecimal representations.  

 

  (a).  7777  (b). 1234   (c). 1000. 
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Answers/Solutions to Tutorial Questions  
 

S1. (i).  The factors of 30 are: 1, 2, 3, 5, 6, 10, 15, and 30. 

 (ii).  The factors of 100 are: 1, 2, 4, 5, 10, 20, 25, 50, 100. 

 (iii).  The factors of 73 are: 1 and 73 (73 is a prime number). 

 (iv).  The factors of 84 are: 1, 2, 3 ,4, 6, 7, 12, 14, 21, 28, 41, 84. 

 

 

S2. (i).  The first three multiples of 7 are: 7, 14 and 21.  

(ii).  The first three multiples of 10 are 10, 100 and 1000.  

(iii).  The first three multiples of 131 are 131, 262 and 393.  

(iv).  The first three multiples of 999 are 999, 1998 and 2997.  

 

 

S3.  (i).  732284 ×××=    (ii).  13533585 ×××=  

(iii).  13522221040 ×××××=   (iv).  4722188 ××=

 

  

(v).  3133279 ××=

 

 

 

(vi).  23600

  

236100 ×=

  

    

2361010 ××=

  2365252 ××××=

  11825252 ×××××=

  59225252 ××××××=

   

(vii).  4023

   

13413 ×=

  

    

44733 ××=

  149333 ×××=

   

 

S4. 7749 ×=

 

.  The only prime factor of 49 is 7.  

 

 

S5.  Determine the prime factorisation of each number: 

73363 ××=   

72222112 ××××=   

List the factors common to both and multiply them together.   

Only 7 is common to both and so GCD(63, 112) = 7. 
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S6.  Multiples of 28 are: 28, 56, 84, 112, . . .  

Multiples of 42 are: 42, 84, 126, . . .  

Hence, LCM(28, 42) = 84.  

 

 

S7.  (i).  1472
4

5888

)9264,(gcd

9264
=)9264,(lcm ==×

.  

 

(ii).  6
1326

7956

)10278,(lcm

10278
=)10278,(gcd ==×

.  

 

 

Modular Arithmetic 

S8.  (i).  2   (ii). 4   (iii).  0   (iv). 1  

(v).  1   (vi).  9   (vii).  2   (viii). 13 

 

 

S9.  (i).  2   (ii).  5   (iii).  8   (iv).  2  

 (v).  4   (vi).  3  

 

 

S10. Cayley Addition Table for 5 

 

+5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 

 

S11.  (i)  Cayley multiplication table for 4.  

 

â4 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 
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(ii).  Note that 12 −  does not exist in 4, as in 4 there is no x such that  

)4mod(12 ≡x .  From the table 33 1 =− .   

 

(iii).  (a)  1)4mod(9)4mod(3)32( ==+×   

 (b).  0)4mod(4)4mod()332( =−=−−   

 (c).  2)4mod(6)4mod(3)31( =−=×−  

 

 

S12. (i). Cayley multiplication table for 7.  

 

â7 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 

2 0 2 4 6 1 3 5 

3 0 3 6 2 5 1 4 

4 0 4 1 5 2 6 3 

5 0 5 3 1 6 4 2 

6 0 6 5 4 3 2 1 

 

(ii).  From the table 24 1 =−  and 66 1 =− .   

 

 (iii).  (a)  6)7mod(15)7mod(3)61( =−=×−   

 

  (b)  2)7mod(12)7mod(4)41( =−=×−  

 

 

S13.   Each element of m has a multiplicative inverse only if m is prime. 

 

 

S14.  Cayley subtraction table for 5.  

 

‒  0 1 2 3 4 

0 0 4 3 2 1 

1 1 0 4 3 2 

2 2 1 0 4 3 

3 3 2 1 0 4 

4 4 3 2 1 0 
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S15. Cayley addition table for 2:  

+2 0 1 

0 0 1 

1 1 0 

 

Cayley multiplication table for 2: 

×2 0 1 

0 0 0 

1 0 1 

 

 

Modulo 2 Matrix Arithmetic  

 

S12. (i).  







=








++
++

=







+







01

00

1110

0011

11

01

10

01
 

 









=








×+××+×
×+××+×

=















11

01

11001110

10011011

11

01

10

01
 

 

 

(ii). 
















=

















+++
+++
+++

=















+

















010

001

000

110111

111101

111111

101

110

111

111

111

111

 

















×+×+××+×+××+×+×
×+×+××+×+××+×+×
×+×+××+×+××+×+×

=
































111111011111110111

111111111111110111

111111011111110111

101

110

111

111

111

111

 
















=

















++++++
++++++
++++++

=
100

100

100

111011101

111011101

111011101

 

 

 

(iii). Cannot add these matrices as they have different sizes. 

 


























11

10

01

00

01
















=

















×+××+×
×+××+×
×+××+×

=
10

00

10

10111001

10101000

10111001
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Number Systems  

S17.  (i). Decimal to Binary  

(a).  100111  (b).  1001001  (c).  1100100  

(d).  101100111   (e).  1101111   (f).  1011011101  

(g).  10011010010  (h).  11111011100   (j).  11111100001.  

 

 (ii). Decimal to Hexadecimal   

(a).  27   (b).  49   (c).  64  

(d).  167    (e).  6F   (f).  2DD  

(g).  4D2   (h).  7DC    (j).  7E1.  

 

 

S18.  (i). Binary to Decimal  

  (a). 255  (b).  43  (c). 455  

  (d).  82   (e).  3811  (f).  1237 

  (g). 2184   (h).  423.  

 

(ii). Binary to Hexadecimal  

  (a).  FF  (b).  2B  (c).  1C7  (d).  52  

  (e).  EE3  (f).  4D5   (g).  888  (h).  1A7.  

 

 

S19.  (i). Hexadecimal to Decimal  

 (a).  3027   (b).  3822  (c).  50 (d).  80  

 (e).  2748  (f).  48065  (g).  764 (h).  170.  

 

(ii). Hexadecimal to Binary  

 (a).  101111010011 (b). 111011101110   (c).  110010  

 (d).  1010000    (e).  101010111100  

 (f).  1011101111000001  (g).  1011111100  (h).  10101010.   

 

 

S20.  (i).  Octal to Decimal 

(a).  4095     (b).  668     (c).  512.  

 

(ii).  Octal to Binary  

 (a).  111111111111   (b).  1010011100   (c).  1000000000 .   

 

(iii).  Octal to Hexadecimal  

(a).  FFF     (b).  C92     (c).  002 .  


