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Complex Numbers 
 
1) The Familiar Number System 
 
The number system we use today did not arise suddenly as the blinding flash of inspiration of 
a single person.  Concepts of number and notation evolved gradually over several millennia, 
with evolutionary steps often occurring out of the need to answer questions and solve 
problems.  Before we begin this section in earnest, it is useful to look at how our number 
system is made up from different sets of numbers. 
 
The Natural Numbers () 
 
 }...,5,4,3,2,1{=  
 
This set is fine for basic counting and it is said to be “closed” under addition and 
multiplication.  That is, add or multiply two natural numbers and you still get a natural 
number.  It doesn’t cope that well with subtraction or division. 
 
 
The Whole Numbers () 
 
 }...,5,4,3,2,1,0{=  
 
The zero improves matters slightly; we can now subtract a natural number from itself! 
 
 
The Integers () 
 
 }...,3,2,1,0,1,2,3,...{ −−−=  
 
Subtraction is now within the scope of integers, but division is limited. 
 
 
The Rational Numbers ()  
 
The set of numbers that can be expressed as ratios of two integers.  Rational numbers are 
“closed” under addition, subtraction, multiplication and division, however it does not include 
solutions to equations like 022 =−x  or answer a whole host of other mathematical 
questions,  e.g. “What is the ratio of a circle’s circumference to its diameter?”  Numbers like 

2   and  π  are called Irrational Numbers. 

 
 
When all the irrational numbers are included along with the rational numbers, we have the set 
of so-called Real Numbers ().  This seems to have completed the evolutionary process and 
provided us with a set of numbers that can deal with any numerical problem.  This, as you 
will see, it not the case.  We are now going to extend the number system even further by 
delving into the realms of Imaginary Numbers and Complex Numbers. 
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2) Imaginary Numbers 
 
Consider the equation 
 
    092 =+z  . 
 
Attempting to solve this equation we obtain 
 

    

.9

92

−±=

−=

z

z

 

 
We appear to have a problem with the square root of a negative number.  Do we stop here?  
Do we give up and say that there is no solution to the problem?  Absolutely not!  We can 
write 
 

    

.13

31

91

9)1(

−±=

×−±=

×−±=

×−±=z

 

 

We are, however, stuck with evaluating 1− within the set of real numbers, but we can 

extend our number system to include it.  Mathematicians refer to 1−  by the lower-case 

letter  i ; because engineers use  i  for current, they usually refer to it by  j instead.  This means 
that the solution to our equation 
 
    092 =+z  
 
can be written as 
 
    jz 3±=  . 
 
We can reduce the square root of any negative number in a similar fashion: 
 

    njn =−  . 

 
 
 
Multiples of  j  are called Imaginary Numbers. 
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3) Complex Numbers ()  
 
Now consider the equation 
 
    .01342 =++ zz  
 
This is a quadratic equation.  Applying the well-known quadratic formula we obtain 
 

  .
2

364

2

131444 2 −±−
=

××−±−
=z  

 
Before, we may have stopped at this point and claimed “no solution”.  However, with the 
concept of imaginary numbers we can take this further: 
 

    

.32or32

32

2

64

jj

j

j
z

−−+−=

±−=

±−=

 

 
We have two solutions of the quadratic equation, each of which appears to be a combination 
of real and imaginary numbers.  We call such a combination 
 
    jba +  , 
 
 where  a  and  b  are real numbers, a Complex Number. 
 
Notes 
 

• In  jba + ,  a  is called the real part and  b  the imaginary part of the complex 
number. 

 
 e.g.  j25 − : real part is  5 ;  imaginary part is  −2 . 
 

• Two complex numbers are equal if, and only if, their real parts are equal and their 
imaginary parts are equal. 

 
• The real numbers are a subset of the complex numbers:  e.g.  j044 += .  So a real 

number may be regarded as a complex number with a zero imaginary part. 
 

• Similarly, the imaginary numbers are also a subset of the complex numbers:  e.g.  
jj 303 += .  So an imaginary number may be regarded as a complex number with 

a zero real part. 
 
• Although the concept of complex numbers may seem a totally abstract one, complex 

numbers have many real-life applications in applied mathematics and engineering. 
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4) The Arithmetic of Complex Numbers 
 
All the usual arithmetic operations associated with real numbers can be performed on 
complex numbers.  Whatever the operation or combination of operations, the answer can 
always be written in the form  jba + . 
 
When dealing with complex arithmetic, it is good practice to write complex numbers in 
brackets.  The brackets can then be removed using usual algebraic techniques. 
 
 
 
a) Addition and Subtraction 
 
All we do here is combine the real parts and then combine the imaginary parts. 
 
 
Examples 
 
(1). Given two complex numbers  jz 361 +=   and  jz 582 −= , determine 
 
 (i). 21 zz +   ; 
 
 (ii). 21 zz −   . 
 
 
 
(i). )58()36(21 jjzz −++=+  
 

 

j

jj

jj

214

5386

5836

−=

−++=

−++=

 

 
 
 
 
(ii). )58()36(21 jjzz −−+=−  
 

 

j

jj

jj

82

5386

5836

+−=

++−=

+−+=
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b) Multiplication 
 

Note:  11 2 −=→−= jj   . 

 
Multiplication of two complex numbers is just the same as multiplying out two sets of 
brackets in ordinary algebra.  Just remember that when  2j   appears, we can replace it by 1−  . 
 
 
Example 
 
(2). For  jz 731 +=   and  jz 542 −= , form the product  21 zz . 
 
 

  

j

j

j

jjj

jjzz

1347

351312

)1(351312

35281512

)54()73(

2

21

+=

++=

−−+=

−+−=

−+=

 

 
 
 
c) Division 
 
The division of one complex number by another is a little more complicated.  First note the 
following. 
 
For any complex number, we form its complex conjugate partner by changing the sign of the 
imaginary part.  For example: 
 
 complex number:  j32 +  
 complex conjugate: j32 −   ; 
 
 complex number:  j24 −−  
 complex conjugate: j24 +−   . 
 
When a complex number is multiplied by its conjugate, the result is always a positive, real 
number: 
 
 13949664)32()32( 2 =+=−+−=−+ jjjjj  
 
 2041648816)24()24( 2 =+=−+−=+−−− jjjjj   . 
 
We use this property to help us divide complex numbers. 
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Example 
 

(3). For  jz 541 −=   and  jz 322 += , form the quotient (ratio)  
2

1

z

z
. 

 

  
)32(

)54(

2

1

j

j

z

z

+
−=  

 
 
Complex fractions are no different from real number fractions in that you can multiply top 
(numerator) and bottom (denominator) by the same number and its “net value” remains 
unaltered.  Here we choose to multiply top and bottom by the conjugate of the denominator: 
 

  
)32(

)32(

)32(

)54(

2

1

j

j

j

j

z

z

−
−

+
−=   . 

 
 
Next, we multiply out the numerators, and then the denominators: 
 

  

.
13

22

13

7

13

227

94

15228

9664

1510128
2

2

2

1

j

j

j

jjj

jjj

z

z

−−=

−−=

+
−−=

−+−
+−−=

 

 
 
 
Multiplying top and bottom by the conjugate of the denominator will always give a single real 
number in the denominator position, and so the division can be completed. 
 
 
 
d) Powers and Roots of Complex Numbers 
 
To complete the basic arithmetic of complex numbers we shall look at determining powers 
and roots.  However, we shall defer this until Section 6, after we have looked at an alternative 
representation for complex numbers. 
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5) The Rectangular Form and Polar Form of a Complex Number 
 
As we have seen, a complex number is specified by two “ordinary” numbers, the real part and 
the imaginary part.  By regarding these two numbers as coordinates on an Oxy axes system, 
we can represent a complex number graphically by a point: 

 

b 

O 
x 

y 

a 

jba +

 
 
In this context, the x-axis is called the real axis, the y-axis is the imaginary axis and the 
whole axes system is an Argand diagram.  Given this link to coordinates, we shall now refer 
to 
 
     jba +  
 
as the Cartesian or rectangular form of a complex number. 
 
If we now indicate the position of a point depicting a complex number by an arrow radiating 
from the origin, that is, 

 

b 

O 
x 

y 

a 

jba +

r 

θ 

 
we can use the arrow length ( r ) and orientation ( θ ) as an alternative way of specifying a 
complex number.  This gives us the so-called polar form of a complex number which is 
written as either 
 
    )sincos( °+°= θθ jrz  
 
or the abbreviated version 
 
    °∠= θrz   ; 
 
in this,  r  is called the magnitude of the complex number, and  θ° , its angle or argument. 
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6) The Relationship Between Polar and Cartesian (Rectangular) Forms 
 
Rectangular Form: jbaz +=  
 
Polar Form:  °∠= θrz  
 
A combination of basic trigonometry and Pythagoras’ Theorem gives the following 
conversion formulae: 
 
Polar → Rectangular:  °= θcosra  °= θsinrb  
 

Rectangular → Polar:  22 bazr +==  





= −

a

b1tanθ  . 

 
The conversion “Polar → Rectangular” is quite straightforward, but care must be taken when 
applying “Rectangular → Polar”, since the quadrant in which θ  lies must be determined 
before evaluating the inverse tangent. 
 
 
 
Examples 
 
(4). (i). A complex number has magnitude  2  and angle  210° .  Express the complex 

number in its Cartesian or rectangular form. 
 
    °∠=°∠= 2102θrz  
 

    

732.1

)210(cos2

cos

−=
°=

°= θra

 

1

)210(sin2

sin

−=
°=

°= θrb

 

 
    jz 1732.1 −−=  
 
 
 
 (ii). Express the complex number  jz 24 +−=  in polar form: 
 
    jjbaz 24 +−=+=  
 

    

472.4

20

2)4( 22

22

=
=

+−=

+= bar

 

 
  Determine the / .  .  . 



9 
 

Determine the quadrant for the angle ( 2,4 =−= ba ) : 

     

 

 

    

°=









−
=







=

−

−

43.153

angle]quadrant  2nd [
4

2
tan

tan

1

1

a

bθ

 

 
    °∠= 43.153472.4z  

 
 
Most calculators have these conversion formulae pre-programmed.  Please refer to your own 
calculator’s instruction booklet for information on how to implement these conversion 
processes or, if that fails, ask in the tutorial classes. 
 
 
 
7) The Arithmetic of Complex Numbers in Polar Form 
 
Addition and subtraction is only really feasible in Cartesian (rectangular) form.  However, 
other aspects of complex arithmetic are simplified in polar form. 
 
 
a) Multiplication and Division 
 
If we have two complex numbers in polar form, 
 
   111111 )sincos( θθθ ∠=+= rjrz  
 
   222222 )sincos( θθθ ∠=+= rjrz  
 
then, by some application of trig identities, it can be shown that their product and quotient are 
given by 
 
  )(])(sin)(cos[ 212121212121 θθθθθθ +∠=+++= rrjrrzz  
 
and 
 

  )(])(sin)(cos[ 21
2

1
2121

2

1

2

1 θθθθθθ −∠=−+−=
r

r
j

r

r

z

z
  . 
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Examples 
 
(5). Given the two complex numbers in polar form, 
 
   °∠= 4061z      and     °∠= 3022z  , 
 

 determine the product  21 zz  and quotient 
2

1

z

z
 also in polar form. 

 
 

    

°∠=

°+°∠×=

+∠=

7012

)3040(26

)( 212121 θθrrzz

 

 
 

    

°∠=

°−°∠=

−∠=

103

)3040(
2

6

)( 21
2

1

2

1 θθ
r

r

z

z

 

 
 
 
(6). Similarly for     °∠= 80101z      and     )30(42 °−∠=z  , 
 

    

°∠=

°−+°∠×=

+∠=

5040

))30(80(410

)( 212121 θθrrzz

 

 
 

    

°∠=

°−−°∠=

−∠=

1105.2

))30(80(
4

10

)( 21
2

1

2

1 θθ
r

r

z

z
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b) Powers of Complex Numbers 
 
For 
 
   θθθ ∠=+= rjrz )sincos( , 
 
we can compute a power of  z  using the formula 
 
   θθθ nrnjnrz nnn ∠=+= )sincos(   . 
 
This not obvious but perhaps can be seen if we look at a couple of simple cases and link back 
to the multiplication rule of the previous subsection:   
 
   θ∠= rz  
 
   θθθ 2)(.. 22 ∠=+∠== rrrzzz  
 
   θθθ 3)2(.. 3223 ∠=+∠== rrrzzz   . 
 
 
Examples 
 
(7). (i). °∠= 402z   → °∠=°×∠= 1208403233z  
 
 (ii). )20(5 °−∠=z  → )40(25)20(2522 °−∠=°−×∠=z  
 
 
 
c) Roots of Complex Numbers 
 
When working solely with ordinary (real) numbers, if we take a square root we obtain either 
two values (if the number is positive) or no values (if the number is negative).  For example, 
 

  39 +=      or     39 −=  ; 

 

  9−    not possible in the real number system. 

 
Extending our number system to include complex numbers will allow us to determine two 
square roots for all numbers, positive, negative or, indeed, complex numbers themselves. 
 
In the real number system numbers have only one cube root, e.g. 
 

   283 =           ,          3273 −=−  ; 

 
in the complex number system a number has three cube roots. 
 
And the pattern continues.  In general, determining the nth roots of a number will yield n 
values when working in the complex number system. 
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To determine the roots of a number z , we first ensure it is expressed as a polar complex 
number: 
 
    θ∠= rz  . 
 
 
Just as in the real number system, roots can be expressed as fractional powers.  That is 
 

    2
1

zz ≡  

 

    3
1

3 zz ≡  

 

    nzzn
1≡   , 

 
where ≡  means “identical to”.  This being the case, we can use the result from the “Powers” 
subsection above to determine roots: 
 
    θ∠= rz  
 

    





∠=

n
rz nn

θ11

 . 

 
 
This will give us one nth root.  What about the other 1−n ?  Note that on an Argand diagram 
 
   θ∠= rz  
   )360( °+∠= θrz  
   )3602( °×+∠= θrz  
   etc. 
 
all occupy the same position: 
 
 

   

 
 
 
To find all the roots of a complex number, we must consider these added rotations. 
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Square Roots 
 
Number: θ∠= rz  
 

Root 1: 





∠=

2
2

1
2

1 θ
rz  

 

Root 2: 





 °+∠=






 °+∠= 180

22

360
2

1
2

1
2

1 θθ
rrz  

 
 
Note that the magnitudes of the two roots are the same and the angle increment is 180°. 
 
 
 
Example 
 
 
(8). Number: °∠=+= 13.53543 jz  [Two square roots] 
 

 Root 1: °∠=





 °∠= 56.2624.2

2

13.53
5 2

1
2

1

z  

 

 Root 2: ( )°+°∠=





 °+°∠= 18056.2624.2

2

36013.53
5 2

1
2

1

z  

   °∠= 56.20624.2  
 
 
 
 
Cube Roots 
 
Number: θ∠= rz  
 

Root 1: 





∠=

3
3

1
3

1 θ
rz  

 

Root 2: 





 °+∠=






 °+∠= 120

33

360
3

1
3

1
3

1 θθ
rrz  

 

Root 3:    





 °+∠=






 °×+∠=






 °×+∠= 240

3
1202

33

3602
3

1
3

1
3

1
3

1 θθθ
rrrz  

 
 
Note that the magnitudes of the three roots are the same and the angle increment is 120°. 
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Example 
 
(9). Number: °∠=+= 13.53543 jz  [Three cube roots] 
 
 

 Root 1: °∠=





 °∠= 7.1771.1

3

13.53
5 3

1
3

1

z  

 
 

 Root 2: ( )°+°∠=





 °+°∠= 1207.1771.1

3

36013.53
5 3

1
3

1

z  

   °∠= 7.13771.1  
 
 

 Root 3: ( )°+°∠=





 °×+°∠= 2407.1771.1

3

360213.53
5 3

1
3

1

z  

   °∠= 7.25771.1  
 

For higher order roots, we can work out the angular increment 





 °

n

360
 and generate the 

required number of roots from the first-calculated root. 
 
 
 
 
Further Example 
 
 
(10). Determine the square roots of  j , expressing both in polar and rectangular forms 
 
 Number: °∠=+== 90110 jjz  [Two square roots] 
 

 Root 1: °∠=





 °∠= 451

2

90
1 2

1
2

1

z  

 
 Rectangular form: j707.0707.0451 +→°∠  

 
 

 Angular increment °=°= 180
2

360
 

 
 

 Root 2: °∠=°+°∠= 2251)18045(12
1

z  

 
 Rectangular form: j707.0707.02251 −−→°∠  
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Aside: The Polar Form of a Complex Number as an Exponential 
 
  The arithmetic of complex numbers in polar form is reminiscent of the laws of 

indices.  In fact it is entirely consistent within mathematics to represent the polar 
form of a complex number as a complex exponential.  This gives rise to Euler’s 
formula: 

 
    θθθ jerjrz =+= )sincos( . 
 
  Algebraically, a complex exponential is handled just like an ordinary (real) one. 
 
 
8) An Application of Complex Numbers to AC Circuits 
 
Consider a simple electronic circuit with an alternating source voltage and a single resistor 
with resistance  R : 
 

 

~ 

R 

)(sin tVv ω=

)(sin tIi ω=

 
 

In this configuration, fπω 2=  where f is the frequency of the oscillation, RIV =  (from 
Ohm’s law) and the voltage ( v ) and current ( i ) oscillate in phase: 
 
 

O 
ω
π2

v  ,  i 

t 

v 

i 
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Now consider the case of a similar circuit, but with a capacitor ( capacitance C ) instead of a 
resistor: 
 
 

 

~ 

C 

)(sin 2
πω −= tVv

)(sin tIi ω=

 
 
 

 

In this case experimentation shows that 
C

I
V

ω
=  and the voltage ( v ) and current ( i ) 

oscillate out of phase, with the voltage “lagging” the current by 2
π  (i.e. a relative phase angle 

of  2
π− ): 

 
 
 

O 
ω
π2

v  ,  i 

t 

i 

v ω
π

2  
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For a circuit with an inductor we find that ILv ω= , where  L  is the inductance, and the 

voltage “leads” the current by 2
π  (i.e. a relative phase angle of  2

π+ ): 

 
 

 

~ 

L 

)(sin 2
πω += tVv

)(sin tIi ω=

 
 
 
 
 
 

O 
ω
π2

v  ,  i 

i 

t 

v 

ω
π

2  

 
 

 
 
 
 
 
The relative phase between voltage and current is important in circuit design.  When 
components are combined it would be useful if the effects on relative phase could be 
calculated.  Complex numbers provide the means. 
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Associated with each of the three types of components is a complex impedance.  This is a 
complex number expressible either in rectangular or polar form: 
 

 
Component 

 

 
Complex Impedance 

 

Resistor °∠=+= 00 RjRzR  

Capacitor )90(
11

0 °−∠=−=
C

j
C

zC ωω
 

Inductor )90(0 °+∠=+= LjLzL ωω  

 
Note:  The angles in the complex impedances are the same as the voltage phase angles 

observed on pages 15-17.  Technically, we should express the angles in radians.  
However we shall be combining these impedances using complex arithmetic and 
you may find that a little easier to do by working in degrees. 

 
Just to remind you: R  is resistance 
    C  is capacitance 
    L  is inductance 
    fπω 2= ,  where  f   is frequency  . 
 
The complex impedances combine in exactly the same way as resistances, but using complex 
arithmetic.  In fact, the magnitude of an impedance is measured in ohms.  Suppose we have 
two components with impedances 1z   and  2z . 
 
 Two components in series: 21:impedance Combined zzz +=  
 
 
 

 Two components in parallel: 
21

111
:impedance Combined

zzz
+=  

 

       or     
21

21

zz

zz
z

+
=  

 
A complex version of Ohm’s law relates voltage, current and impedance: 
 
     izv .=  . 
 
In this formula, voltage and current are also complex numbers.  It turns out that the way the 
angles of the polar forms of the complex numbers combine under the rules of complex 
arithmetic models the effect of the components on relative phase.  Because of this, in this 
context, the complex numbers are sometimes called phasors. 
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Examples 
 
(11). Determine the combined impedance of the following configuration of components:  

 

~ 

L  =  25 mH

R  =  50 Ω

f  =  2500 Hz 

 
 
  96.157075000250022 ≈=×== πππω f  
 
 
 

  




°∠
+

=




°∠
+

=
050

050

0

0 j

R

jR
zR  

 
 
 
  699.392)1025(5000 3 ≈××= −πω L  
 

  




°∠
+

=




°∠
+

=
90699.392

699.3920

90

0 j

L

jL
zL ω

ω
 

 
 
 
 Components are in series so add (in rectangular form) to give combined impedance: 
 
  jzzz LRT 699.39250 +=+=  . 
 
 
 
 Convert to polar form using a calculator: 
 
  °∠= 744.82869.395Tz   . 
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(12). Determine the combined impedance of the following configuration of components:  
 

~ 

C  =  50 μF 

R  =  75 Ω 

f  =  50 Hz 

 
 
  159.3141005022 ≈=×== πππω f  
 
 

  




°∠
+

=




°∠
+

=
075

075

0

0 j

R

jR
zR  

 
 

  662.63
)1050(100

11
6

≈
××

= −πω C
 

 

  




°−∠
−

=










°−∠

−
=

)90(662.63

662.630

)90(
1

1
0

j

C

j
C

zC

ω

ω
 

 

 Components are in parallel so the combined impedance is given by:  
CR

CR
T zz

zz
z

+
= . 

 
 Upper product best evaluated in polar form: 
 

  
)90(65.4774

))90(662.63()075(

°−∠=
°−∠°∠=CR zz

 

 
 Lower sum evaluated in rectangular form, then converted to polar form before 

completing final division in polar form: 
 

  

)33.40(38.98

662.6375

)662.630()075(

°−∠=
−=

−++=+
j

jjzz CR

 

 

  )67.49(53.48
)33.40(38.98

)90(65.4774 °−∠=
°−∠
°−∠=

+
=

CR

CR
T zz

zz
z   . 
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(13). Consider the following circuit with two components in series: 
 

~ 

C R 

v 

 
 Suppose that: the source voltage is  5 mV  at  a frequency of  1000 Hz ; 
 
    the resistance of the resistor is  30 Ω ; 
 
    the capacitance of the capacitor is  10 μF . 
 
 Determine: 
 
 (i). the circular frequency  ω ; 
 
 (ii). the total impedance of the circuit components; 
 
 (iii). the current  i  in complex polar form (assuming a zero phase for the source 

voltage); 
 
 (iv). the voltage across each component. 
 
 
 
 
(i). 185.62832000100022 ≈=×== πππω f  

 
 
 
(ii). Impedance of  R : °∠=+= 030030 jzR  
 

 Impedance of  C : 915.15
50

10102000

11
6

≈=
××

= − ππω C
 

 
     )90(915.15915.150 °−∠=−= jzC  

 
 Combined impedance : Components in series, so add impedances (in rectangular 
     form) 
 

     

)946.27(96.33

915.1530

°−∠=
−=
+=

j

zzz CRT
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(iii). Set the complex form of the voltage: °∠= 0005.0v  
 
 By Ohm’s law, the current is given by: 
  

     

)946.27()10472.1(

)946.27(96.33

0005.0

4 °+∠×=

°−∠
°∠=

=

−

Tz

v
i

 

 
 
 
(iv). Voltage across the resistor: 
 

     

°∠×=

°∠×°∠=

=

−

−

946.2710416.4

)946.2710472.1()030(

3

4

izv RR

 

 
 Voltage across the capacitor: 
 

     

)054.62(10343.2

)946.2710472.1())90(915.15(

3

4

°−∠×=

°∠×°−∠=

=

−

−

izv CC
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Tutorial Exercises 
 
Q1. Express each of the following expressions in the Cartesian (i.e. rectangular) complex 

form jba + : 
 

 (i). 42 −−   (ii). 258 −+−  

 

 (iii). 166 −+−   (iv). 125 −+   . 

 
 
 
 
Q2. Determine the complex solutions of the following equations: 
 
 (i). 0362 =+z   (ii). 0272 =+z  
 
 (iii). 02082 =++ zz  (iv). 012 =++ zz   . 
 
 
 
 
Q3. Simplify the following complex expressions, expressing each in the form jba + : 
 
 
 (i). )68()114( jj +++  (ii). )34()8( jj +−+  
 
 (iii). )63()48( jj ++−−  (iv). )81()59( jj −−−+  
 
 (v). )24()52( jj ++  (vi). )87()78( jj +−  
 
 (vii). )36()43( jj −+−  (viii). )34()34( jj +−  
 
 (ix). 2)63( j+   (x). 2)22( j−  
 
 (xi). 2)45( j+−   (xii). 2)38( j−−  
 
 (xiii). 8j  [Hint: 42 )( j= ]  (xiv). 10j     [Hint: 52 )( j= ] 
 
 (xv). 9j  [Hint: jj .8= ]  (xvi). 11j     [Hint: jj .10= ] 
 
 (xvii). 3)21( j+   (xviii). 2)( jqp +   . 
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Q4. Simplify the following complex divisions to rectangular form: 
 

 (i). 
j

j

21

23

−
+

   (ii). 
j

j

64

54

+
−

 

 

 (iii). 
j

j

+
−

4

8
   (iv). 

j

j

−−
+

1

29
 

 

 (v). 
j34

1

+
   (vi). 

j512

1

−
  . 

 
 
 
 
Q5. Graph each of the following complex numbers on an Argand diagram (i.e. an Oxy axes 

system) and, without the aid of a calculator, express each in polar form: 
 
 
 (i). j22 +    (ii). j44 +−  
 
 (iii). j33 −−    (iv). j55 −  
 
 (v). 8   [Hint: j08 += ]  (vi). 25 
 
 (vii). 4−     (viii). 7−  
 
 (ix). j2    [Hint: j20 += ]  (x). j6  
 
 (xi). j5−     (xii). j20−   . 
 
 
 
 
 
Q6. Convert each of the following complex numbers to polar form using both conversion 

formulae and your calculator’s conversion facility: 
 
 (i). j43 +    (ii). j43 +−  
 
 (iii). j45 +−    (iv). j45 −−   . 
 
 [Note: When using conversion formulae, remember to use a sketch to establish the 

correct quadrant for the angle.] 
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Q7. Four complex numbers in polar form are 
 
  °∠= 3041z   )50(32 °−∠=z  
 
  °∠= 12023z   )100(64 °−∠=z  . 

 
 
 (i). Sketch each complex number on an Argand diagram. 
 
 
 (ii). Determine the products  31 zz  , 43 zz   and  42 zz   in their polar forms. 

 

 (iii). Determine the quotients  
3

1

z

z
 ,  

1

3

z

z
 ,  

4

2

z

z
  and  

1

4

z

z
 in their polar forms. 

 

 (iv). Determine  
41

32

zz

zz
  in polar form. 

 
 (v). Convert  1z  ,  2z  ,  3z   and  4z   to their rectangular forms using both conversion 

formulae and your calculator’s conversion facility. 
 
 
 
 
 
Q8. (i). Determine the square roots of  °∠ 604 . 
 
 (ii). Determine the square roots of  j−1  in polar form. 
 
 (iii). Determine the cube roots of  j   in polar and rectangular forms. 
 
 
 
 
 
Q9. Determine the combined impedance of the following configuration of components:  

 

~ 

L  =  40 mH

R  =  150 Ω

f  =  500 Hz 
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Q10. Determine the combined impedance of the following configuration of components:  
 

~ 

C  =  150 μF 

R  =  25 Ω 

f  =  250 Hz 

 
 
 
 
 
Q11. Consider the following circuit with two components in series: 

 
~ 

C R 

v 

L 

 
 Suppose that: the source voltage is  8 mV  at  a frequency of  750 Hz ; 
 
    the resistance of the resistor is  50 Ω ; 
 
    the inductance of the inductor is  250 mH ; 
 
    the capacitance of the capacitor is  20 μF . 
 
 Determine: 
 
 (i). the circular frequency  ω ; 
 
 
 (ii). the total impedance of the circuit components; 
 
 
 (iii). the current  i  in complex polar form (assuming a zero phase for the source 

voltage); 
 
 
 (iv). the voltage across each component. 
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Answers 
 
 
A1. (i). j22 −    (ii). j58 +−  
 
 

 (iii). j46 +−    (iv). j325 +   . 

 
 
 
 

A2. (i). jz 6±=    (ii). jz 33±=  

 
 

 (iii). jz 24 ±−=   (iv). jz 2

3

2
1 ±−=   . 

 
 
 
 
A3. (i). j1712 +   (ii). j24 −  
 
 
 (iii). j25 +−   (iv). j1310 +   . 
 
 
 (v). j242 +−   (vi). j15112 +  
 
 
 (vii). j336 +−   (viii). j025or25 +  
 
 
 (ix). j3627 +−   (x). jj 80or8 −−  
 
 
 (xi). j409 −   (xii). j4855 +  
 
 
 (xiii). 1+     (xiv). 1−  
 
 
 (xv). j     (xvi). j−  
 
 
 (xvii). j211 −−   (xviii). jqpqp 2)( 22 +−   . 
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A3. (i). j5
8

5
1 +−    (ii). j13

11
26
7 −−  

 
 
 (iii). j17

12
17
31 −    (iv). j2

7
2

11 +−  

 
 
 (v). j25

3
25
4 −    (vi). j169

5
169
12 +   . 

 
 
 
 
 

A5. (i). °∠ 4522   (ii). °∠ 13524  

 
 

 (iii). °∠ 22523   or  )135(23 °−∠   

 
 

 (iv). °∠ 31525   or  )45(25 °−∠  

 
 
 (v). °∠ 08    (vi). °∠ 025  
 
 
 (vii). °∠ 1804    (viii). °∠ 1807  
 
 
 (ix). °∠ 902    (x). °∠ 906  
 
 
 (xi). °∠ 2705   or  )90(5 °−∠  (xii). °∠ 27020   or  )90(20 °−∠   . 
 
 
 
 
 
A6. (i). °∠ 13.535   (ii). °∠ 87.1265  
 
 
 (iii). °∠ 34.141403.6   (iv). )34.141(403.6 °−∠   . 
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A6. (ii). °∠= 150831 zz  

 
  °∠= 201243 zz  

 
  )150(1842 °−∠=zz  
 
 

 (iii). )90(2
3

1 °−∠=
z

z
 

 

  °∠= 905.0
1

3

z

z
 

 

  °∠= 505.0
4

2

z

z
 

 

  )130(5.1
1

4 °−∠=
z

z
 

 
 

 (iv). °∠= 14025.0
41

32

zz

zz
 

 
 
 (v). jz 2464.33041 +→°∠=  
 
  jz 298.2928.1)50(32 −→°−∠=  
 
  jz 732.1112023 +−→°∠=  

 
  jz 909.5042.1)100(64 −−→°−∠=   . 
 
 
 
 
A8. (i). °∠ 302      ,     °∠ 2102  
 
 
 (ii). )5.22(189.1 °−∠      ,     °∠ 5.157189.1  
 
 
 (iii). j5.0866.0301 +→°∠  
 
  j5.0866.01501 +−→°∠  
 
  jj −=−→°∠ 02701   . 
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A9.  59.3141100050022 ≈=×== πππω f  
 
 
 

  




°∠
+

=




°∠
+

=
0150

0150

0

0 j

R

jR
zR  

 
 
 
  664.125)1040(1000 3 ≈××= −πω L  
 

  




°∠
+

=




°∠
+

=
90664.125

664.1250

90

0 j

L

jL
zL ω

ω
 

 
 
 
 Components are in series so add (in rectangular form) to give combined impedance: 
 
  jzzz LRT 664.125150 +=+=  . 
 
 
 
 Convert to polar form using a calculator: 
 
  °∠= 955.39682.195Tz   . 
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A10.  80.157050025022 ≈=×== πππω f  
 
 

  




°∠
+

=




°∠
+

=
025

025

0

0 j

R

jR
zR  

 
 

  244.4
)10150(500

11
6

≈
××

= −πω C
 

 

  




°−∠
−

=










°−∠

−
=

)90(244.4

244.40

)90(
1

1
0

j

C

j
C

zC

ω

ω
 

 

 Components are in parallel so the combined impedance is given by:  
CR

CR
T zz

zz
z

+
= . 

 
 Upper product best evaluated in polar form: 
 

  
)90(10.106

))90(244.4()025(

°−∠=
°−∠°∠=CR zz

 

 
 Lower sum evaluated in rectangular form, then converted to polar form before 

completing final division in polar form: 
 

  

)63.9(358.25

244.425

)244.40()025(

°−∠=
−=

−++=+
j

jjzz CR

 

 

  )37.80(18.4
)63.9(358.25

)90(10.106 °−∠=
°−∠

°−∠=
+

=
CR

CR
T zz

zz
z   . 
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A11. (i). 39.4712150075022 ≈=×== πππω f  
 
 
 
 (ii). Impedance of  R : °∠=+= 050050 jzR  
 
  Impedance of  L : 097.1178)10250(1500 3 ≈××= −πω L  
 

     




°∠
+

=




°∠
+

=
90097.1178

097.11780

90

0 j

L

jL
zL ω

ω
 

 

  Impedance of  C : 610.10
10201500

11
6

≈
××

= −πω C
 

 
     )90(610.10610.100 °−∠=−= jzC  

 
  Combined impedance : Components in series, so add impedances (in rectangular 
     form) 
 

     

°∠=
+=

++=

548.87557.1168

487.116750 j

zzzz CLRT

 

 
 
 (iii). Set the complex form of the voltage: °∠= 0008.0v  
 
  By Ohm’s law, the current is given by: 
  

     

)548.87()10846.6(

548.87557.1168

0008.0

6 °−∠×=

°∠
°∠=

=

−

Tz

v
i

 

 
 
 
 (iv). Voltage across the resistor: 
 

     

)548.87(10423.3

))548.87(10846.6()050(

4

6

°−∠×=

°−∠×°∠=

=

−

−

izv RR
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  Voltage across the inductor: 
 

     

°∠×=

°−∠×°∠=

=

−

−

452.210065.8

))548.87(10846.6()90097.1178(

3

6

izv LL

 

 
 
  Voltage across the capacitor: 
 

     

)548.177(10264.7

)548.87(10846.6())90(610.10(

5

6

°−∠×=

°−∠×°−∠=

=

−

−

izv CC

 

 
 


