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Differential Calculus
(1). Review of Function Notation

A function is essentially a mathematical rule for determining the value of one quantity (the
dependent variable) from the value of another (the independent variable).

Example

(2). y = x°
X - independent variable

y - dependent variable.

We can refer tothe LHS as f (x) (read as“f of X’):

f(x) = x* .

Using this notation, we can refer to specific values of the function:

f(x) = x°

f(2) = 2° = 4
f(45) = 45° = 20.25

f(X+AX) = (X+AX)® = X + 2XAX + AX® .

By plotting f (x) against x we can determine the graph of the function:

See Figure 1 over the page.
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Figurel

(2). Average Rate of Change of a Function

Consider a projectile fired into the air. Suppose this projectile rose to a height of 1000m in a
time of 2.5s:

4 height

1000

time

@) 2.5

Figure2

We say it travelled at an average vertical velocity of 400 ms™. This is an example of an
averagerate of change of one variable with respect to another:

Changein height (Ah)

Averagevertical velocity = Changein time(At)



For agenera function y = f(x),

5 y = f(x)
y+Ay
A
y A & y
AX
O X X+ AX .
Figure3

the average rate of change of y with respect to x as x changes by an amount Ax is given by

AX AX

Ay F(x+ax) - f(x)

Example

(2). For thefunction
y =x> - 6x + 5
(i). determinethe average rate of change of y per unit changein x;

(if). determine the average rate of change of the function as x changesfrom 4 to 7.

Solution

(i). f(x) = x> — 6x + 5

f(x+Ax) = (Xx+AX)® — 6(Xx+AX) + 5
X> + 2X.AX + AX* — 6X — BAX + 5

(x> — 6x + 5) + (2x — 6)AXx + AX’

Now form/



Now form the average rate of change:

Ay _ f(x+Ax) — f(x)

AX AX
_ (2x - 6) AX + AX
B AX
= (2x — 6) + AX

(ii). As x changesfrom 4to 7: x=4 , Ax=3

&Y _(2x4-6) +3=5
AX

(3). Instantaneous Rate of Change

In the example of the projectile, we arrived at a single value of 400 ms™ for its average
vertical velocity over the first 2.5s of its flight. This figure tells us nothing of the vertical
velocity at any instant of time. For example, what can we say about its vertical velocity
exactly 2.5s into the flight? For a single point in time we have neither a “change in height”,
nor a “change in time” to divide by. What we could do islook at the average rate of change
close to the point of interest over smaller and smaller intervals of time,

Consider the general case of y = f(x) agan, depicted in Figure 3 above. The

instantaneous rate of change of y with respect to x is found by letting Ax become smaller and
smaller, and noting what happens to the ratio

Ay _ f(x+4Ax) - f(x)

AX AX

Mathematically, we are looking for the limiting value of the average rate of change as Ax
tends towards zero. We writeit as

Instantaneousrate of change = Iim(ﬂ) .
Ax—=0{ AX

We call thisthe derivative of y with respect to x and use the following notation:

y = f(x)
dy .
ol f7(x),

reedas“d y by d x equals f dashed (or f prime) of x".



Graphically, we have:

% = gradient of thestraight line AB ;
X

% = gradient of thetangent tothecurveat A .
X

Example
(3). Determinethederivativeof y = x* — 6x + 5 from“first principles’.

From Example (2) (i) the average rate of changeis:

ﬂ:(Zx—6)+Ax.
AX
Let Ax get smaller and smaller (i.e. tend to zero). All that we are left withis 2x — 6,

SO

dy
—4 = 2X — 6 .
dx

The value of the derivative at any particular point tells us whether the function is increasing,
decreasing or doing neither:

— >0 - Increasing
dx
& < 0 —>  Decreasing
dx

ﬂ =0 - Neither (stationary point) .

We shall use thisinformation later for curve sketching.



Example

(4). Forthefunction y = x* +1:

().

(ii).

(iii).

(iv).

(V).

Solution

graph y against x for —2< x<+2;

determine ﬂ :
AX

determine ﬂ
dx

evaJuate% forx = -2,-1,0,+1,+2;
X

relate the value of the derivative to the behaviour of the graph.

(i) y=x"+1

(ii). /

x | =2 | 2 | o | +#u1 | +
y [ s [ 2 [ 1 [ 2 [ 5
y
5
1
-2 -1 @) 1 2




(ii). f(x) = x* +1

f (X+ AX)

Now form the average rate of change:

(x+Ax)* + 1
x* + 2X.AX + AX® + 1
(x> + 1) + 2X.AX + AX?

Ay fF(x+4ax) - f(x)
AX AX
_2XAX + AXP
AX
= 2X + AX
(iii). Derivative:
& _ lim[ 2x + Ax ]
ax AX—0
(iv). / (v).
X -2 -1 +1 +2
7 -4 -2 +2 +4
dx
Graph \ ~ 7 /




(4). Derivativesof Polynomialsand Other Functions

To work out derivatives we rarely go through the limiting process. Certain patterns emerge
from which rules can be derived.

Below isatable of powers of x:

f () £7(x)

1= x° 0

x = x' 1
X2 2X
x® 3x?
x* 4x°
X" nx"*

From this we have arule for differentiating powers of x, which can be shown to hold for any
power, whole number or otherwise.

Using the notation
d
L]
to mean “differentiate the contents of the brackets with respect to X, it is readily shown that
d , _
d—[af(x)] = af’(x), where aisaconstant,
X
and
d , ,
&[f(X) + 9] = /() + g(x) .

This means that we can differentiate a string of terms term-by-term.



Examples

(5). y = 2x> — 5x + 4

dy _ 2(2x) - 51 + 0
dx

4x — 5

x> + 2Xx — 6
X

(6). y =

Note that we cannot just differentiate top and bottom separately; we first divide out:

x+2—E
X

X + 2 — 6X

<
Il

-1

& _ 1+ 0 - 6(—x?)

dx
=1+ 6x°°
6
= 1 + ?
(7). y = ﬂ = x?
ﬂ — %X_}é
dx
1
2%
1




(8). Thevertical displacement of aprojectile is given as afunction of time by

s = -2t> + 3t — 4 .

Determine the projectile’ s vertical velocity and acceleration for any value of t .

Note: v:ﬁ and
dt
V=§=—4t+3
dt —_—
a:ﬂ:—4
dad —

dv
dt

The derivatives of some “standard” functions are stated below without proof :

Note that in calculus

al “trig angles’” must
bein radians and not
in degrees.

Calculus and degrees
do not mix well!

f(x) f7(x)

sin(x) cos(x)

cos() —sin(x)

tan(x) sec’ (X)
e e
In(x) L
X

This table contains functions of x differentiated with respect to x. Later, you will have to
use this table as if it were expressed in terms of other variables, i.e. functions of
differentiated with respect to u, functionsof v differentiated with respect to v, etc..

u

10



(5). Alternative Notation
Sometimes we use the following shorthand notation:

, dy . dx
= 2 X = —
Y7 at

(6). Electrical Applications of the Derivative

In electronic circuits where voltages and currents are changing with repect to one another,
certain relationships can be expressed in terms of derivatives. Below are two such cases:

Law of Capacitance:. i = C (?j—\:
di
Law of Inductance: V = La

(7). Derivativesof Productsand Quotients

We now begin looking at how to differentiate more complicated functions where “first
principles’ is not really an option. The following rules of differentiation are extremely
important.

(@). TheProduct Rule

If
y = f(x)g(x)
then

% = £(x) g(x) + F(X)g(x) .
X

IMPORTANT: Notethat y = f’(x) g’(x) .

Example/

11



Example

(9). Determine% wheny = (x*-1)sinx.
X
f(x) = x*-1 g(x) = sinx
f'(x) = 2x g’(x) = cosx

Y- 900 + 107X

= 2x sinx + (x* —1) cosx

(b). TheQuotient Rule

If

then

dy _ /() 9(x) - F()g(x)
cx [g(0) [

IMPORTANT: Notethat y* # )

9'(x)
Example
(10). Determine% wheny = )):z ;1 :
f(x) = x*-1 g(x) = x*+1
f'(x) = 3x° g’(x) = 2x

Now input these expressions into the quotient rule formula:

12



dy _ ') 9(x) - f(x) g'(x)
dx [a(0) I

33X (xX*+1) — (xX*-1)2x
(x* +1)?

(3x* +3x%) — (2x*=2x)
(x* +1)?

X'+ 3x% + 2x
(x* +1)°

X(X* +3x+ 2)
(x* +1)*

(8). TheChain Rule

Now we shall look at what is probably the most powerful rule of differentiation, the Chain
Rule, and its “wee brother” the Power Rule.

Examples
(11). (i). Suppose we have the function
y = (4x-3)" .

How do we determine the derivative? Expanding the bracket isn’t practical. Instead we
use the power rule:

y = [g(x) ]

% = nlg(0 "™ g'(x) .
X

We differentiate the square bracket as if it were a smple power, then multiply by the
derivative of the contents of the square bracket.

For the above example:
y = (4x-3)"

y = 75(4x-3)".4

300 (4x - 3)™ .

13



(ii).

f(x) = (11x* - 6)°

f’(x) = 8(11x* — 6)’.22x

176x(11x* — 6)’

The Power Ruleisaspecial case of the more general Chain Rule.

Lee y = f(u) where u = g(x) . Then

& _ dy
dx du dx

Examples

(12). Repeating the earlier example where y

Expressthisas

y =u where

Differentiate;

LA
du

Invoke the chain rule:

dy _ dydu
dx du dx
= 75u”™ .4
= 300u™

= 300(4x-3)" .

(4x —3)":

4x -3 .

14



(13). Determine;—di when y = sin(2x).

Expressthisas. y = sin(u) where u= 2x .
Differentiate:
& cos(u) i 2 .
du dx
Chainrule:
dy _ dydu
dx du dx
= cos(u) .2
= 2cos(u)
= 2cos(2x) .
Note: This can be generalised to give the result
y = sin(ax) - % = acos(ax) , where a isaconstant.
X

Further Examples

(14). y = cos(4x+5)
Write as: y = cos(u) u=4x+5
& _ —sin(u) du_ 4
du dx
Chainrule:
dy _ gy du
dx du dx
= —sin(u).4
= —4sin(u)

—4sn(4x+5) .




(15). y = In(1 + 2x°)

Write as: y = Inu u=1+ 2x°
ﬂ — i — ; % — 6)(2
du u 1+ 2x° dx
Chainrule
& _ dydu
dx du dx
I B
1+ 2x
B 6x°2
1+ 2x°

Applying the Chain Rule to “linear variants’ of the standard functions and noting the patterns
in the outcomes gives us an extented set of results that we can apply without the need for all
the detail. [An extrauseful result isincluded at the end of the table]:

£ (x) £(x)
sn(ax+b) a cos(ax + b)
cos(ax + b) _asin(ax+b)
tan(ax + b) a sec? (ax + b)

gax+d oo+
In(ax + b) axa+b
In( f(x)) ff((xx))

16



(9). Implicit Differentiation

A function of the form
y = f(x)

issaid to expressy explicitly interms of x. An expression like
x> +yP - xX*y?* =1

givesy implicitly in terms of x. We do not need y explicitly in terms of x to find % .
X

What we do is differentiate both sides of the equation with respect to x, using the chain rule to
differentiate termsinvolving y.

For any function of y we have
d . d dy
dX[g(y)] = Oly[g(y)]g :
This means we differentiate a y-term in the way we might expect, but we need to multiply by

the derivative of y to ensure that the differentiation iswith respect to x and not y .

As an example,

d

d 2 d 2, Oy
dx[y] dy[y]dx ydx

Once an implicit equation has been differentiated we solve for % .
X

Example

(16). Determine% when x> + y® — x®y? = 1.

Differentiate both sides of the equation: Requires the
Product Rule

d 2 3 3 2 d

— | X + - X = —|[1

. y y ] 1]

2X + 3y2ﬂ - (3X2 y2+x3.2yﬂj = 0
dx dx
\ Notethe /
derivatives

17



Open out the brackets and solve for % :

X
2X + SyZQ - 3x°y? - x3.2yﬂ =0
dx dx
3y2ﬂ - 2x3yﬂ = 3x’y* - 2x
dx dx

(3y2 - 2x3y)0l = 3x°y* - 2x

ay
dx

dy _ (8x°y® - 2x)
dx (3y? - 2x%y)

(10). Logarithmic Differentiation

Logarithmic differentiation is a special case of implicit differentiation and is useful when we
have a function with a variable power or a function that contains multiple products and/or
quotients.

First recall some results from logarithms:

@. In(x.y) = In(x) + In(y)
(ii). |n[5J = In(x) - In(y)
y

(iii). In(x?) = pIn(x)
(iv). In(1) = 0
V). In(e) =1 ,

and two from differentiation:

f’(x)
f(x)

d _1d d _
ot = y ox and o ML

We are now ready to do logarithmic differentiation. The idea is that we can sometimes
simplify a function before differentiating, by first taking natural logs. The process is best
illustrated by a couple of examples.

18



Examples
(17). y = 4"
Take natural logs of both sides:
In(y) = In(4**") .

Now apply logarithm result (iii) stated earlier to bring down the power:

In(y) (x+1)In(4)

xIn(4) + In(4) .

In(y)

Note that In(4) isjust a number. Now we differentiate both sides of the equation
using the result from implicit differentiation:

d d d
—In = In(4) —x + —In(4
X (y) ( )dxx X (4)
1Y w1 o+ o
y dx
T g

y dx

dy

— = In(4

X y In(4)

e® sin(2x)

Take logs of both sides and sort out the product and the quotient using the first two log
results stated earlier:

e® sin(2x)

| = |
") [ e }

In[e*] + In[sin(2x)] — In[y/1+ Xx* ]

Recall that a square root can be expressed as a power of a half:

In(y)

In(y) = In[e**] + In[sin(2x)] — In[(1+ x?)*]

19



Now use the 3rd log result to deal with the powers:

In(y) = 3xIn[e] + In[sin(2x)] — 3 In[(1+ x*)]
Remember In[e] = 1:

In(y) = 3x + In[sin(2x)] — L In[(1+ x*)]

Apply implicit differentiation:

1ldy _ 3 2 cos(2X) 1 2x
y dx sin(2x) 2 1+ x°
1ldy _ 3 2cos(2x) X
y dx sin(2x) 1+ x?
dy _ yl3 N 2F:os(2x) B X .
dx sin(2x) 1+ X

It can be left like this or expressed entirely intermsof X:

dy _ e¥™sin(2x) 3 4 2c0s(2x) X
dx /14 x2 sin(2x) 1+ X

(11). Parametric Differentiation

Aswe have seen, the graph of afunction y = f (x) is, ingenera, acurvein 2D space, and
we have looked at the geometrical relationship between a function (curve) and its derivative
(gradient of tangent to curve).

An implicit relationship between x and y can aso be graphed on an Oxy axes system to
giveacurve. Anexample of thisis

x> +y? =9;
this being the equation of a circle, radius 3, centred on the origin. Implicit differentiation

would give us the derivative of y with respect to x, and the same geometrical relationship
holds.

20



Another way of describing a curve in 2D space is to use parametric equations to define the
x and y coordinates of points on the curve. These parametric equations take the form

x = f(t) y = g(t) ,

wherethe t iscalled a parameter and its value runs over a specified range. Often t istimein
which case it may run from O to some upper time value. In other cases t may be an angle
(usually specified in radians) and has, itself, a geometrical interpretation. For example

X = 2 cost y = 2sint , (0 <t £ 27)

are the parametric equations of a circle of radius 2, centred on the origin. We can see thisin
two ways. Squaring and adding gives

2 2

x> +y (2sint)® + (2 cost)?

= 4sin’t + 4cos’t

= 4[sin®t + cos’t]
= 4x1
=4

thatis, x> + y> = 4, now recognisable asthe equation of acircle.

The other way is to construct a table of values to calculate coordinates of points on the curve,
plot the points and join the dots:

t X = 2 cost y =2sint
0 2 0

Z /2 /2
7 0 2
3/ _ /7 \/7

/4 -2 0
A —J2 -J2
A 0 -2
% /2 -2
2r 2 0

In this context, t is an angle measured (conventionally) anticlockwise from the positive x-
axis. If these coordinates are now plotted we get the following:

21



t== g
A L — t=2%
t=0
&/ 2
S ot=2rx
o [ ]
2 T
t== 0 e P— t = 77”
3r
t = >

Even though a curve may be define parametrically, we do not need to convert to an implicit or
explicit form to determine the derivative of y with respect to x. We can use the following
formulawhich is derived from the Chain Rule:

dy
dy _ dt

- odx
dx At
Examples

(19). For the parametric equations above:

X = 2 cost y = 2sint
L = —2sgnt & = 2 cost
dt dt
d
dy _ %n _ 2cost  cost
~dx " _2s8snt  sint
dx At 2 sint sint

As an example, if we take the parameter value t = Z , this gives

Yo

dx

which confirms the orientation of the tangent line at t = % included in the diagram
above.
22



(20). For the parametric equations:

2

X = 2t+3 y =1t
& Y _ o
dt dt

dx d%t 2

dy
dy:At_Zt ‘

(12). Higher Order Derivatives (Notation)

Before we proceed with some applications of differentiation, let’s just ook at the notation for
the derivative and how it is extended to cover repeated differentiation. We can differentiate a
derivative to give a “second derivative” and again to give a “third derivative” and again and
again as often asrequired. We use the following notation:

d[dy] d?
dx | dx dx?

dx | dx? dx®

[y o

and soon. If usingthe f notation:

dy ,
—= = f’(x
dx (x)
d?y ,
= f"(x
v (X)
d? .,
dXZ = £7(x) or f@(x) .

This idea of repeated differentiation crops up in various areas of differential calculus. We
have already seen one instance in Example (8) where we looked at displacement, velocity and
acceleration:

ds
dt

dv d ds d’s

dt dtdt dt?

23



(13). Equations of Tangentsand Normals

Whether a curve is defined by an explicit, implicit or parametric form, the tangent to the curve
at a given point has a gradient equal to the derivative's value at that point. Related to the
tangent is a line known as the normal to the curve. Thisisaline that is perpendicular to the
tangent line (see diagram below):

tangent

If we denote the gradient of the tangent line by m, and the gradient of the normal lineby m,,
we know from coordinate geometry that
mxm, = -1.

For a point on the curve with coordinates (a , b) , we have:

equation of tangent line: y —b=m(x - a)

—i(x - a) ,

equation of normal line: y — b

where m, isthe derivative evaluated at the point (a , b).

24



Examples

(21). For thecurve definedby y = x* + 3x + 2, determine the equations of the tangent

and normal lines at the point (1, 6).

First determine the function’ s derivative:

ﬂ=2x+3.
dx

Next, determine the tangent’s gradient m, by evaluating this derivative at the given

point,i.e. x =1:
m = 2x1 + 3 =5.

The gradient of the normal lineistherefore

We can now write down the required equations:

tangent: 'y — 6 = 5(x — 1)
y — 6 =5x -5

5x + 1

<
Il

normal: y — 6 =-1(x - 1)

25



(22). Determine the tangents to the curve y = x® — 7x that are paradld to the line
y = 5x — L

At the points of contact of the tangents the curve’s gradient must equal that of the given
ling, i.e. it must equal 5. So we must determine the derivative and set it equal to 5:

Y3 _7-5.

dx
Solvefor x:
3x* = 12
x? = 4
X = x2 .

Crucialy we have two values of x indicating two separate tangents.

Tangent 1.
Atx = +2,y = 2° — 7x2 = -6.
The point of contact of thistangent istherefore (2, —6) .
This means that the equation of thisfirst tangent is
y — (-6 = 5(x - 2)

y + 6 5x - 10

y 5x - 16

Tangent 2
Atx = =2,y = (-2)° - 7x(-2) = +6.
The second point of contact istherefore (-2, +6).
The second tangent equation is therefore

y — 6 =5(x - (-2)

5x + 10

y — 6

y = 5x + 16

26



equations of the tangent and normal lines at the point (-1,1).

Use implicit differentiation to determine the derivative:

i(5x2 — 2Xy + 5y?) = i(12)
dx dx

10x — (2.y + 2x.1ﬂj + 10yﬂ =0
dx dx

10x — 2y - ZXQ + 10yﬂ =0
dx dx

(10y - 2X)ﬂ = 2y — 10x
dx

dy 2(y — 5x)
dx 2(5y - X)

dy y — bX
dx 5y — x

Evaluate the derivative at the point (-1, 1):

dy _ 1-5xD) _ 6 _,
dx 5x1 — (-1 6 '

So m =1and m, = —1. Therequired equations are therefore:

I(x + 1)

tangent: y -1
y -1=x+1

y = X+ 2

normal: y -1 -1(x + 1

(23). For the curve defined (implicitly) by 5x* — 2xy + 5y* = 12, determine the

27



(14). Curve Sketching and “Max / Min”

As you know, if we have afunction y = f (x), then we can plot its graph on an Oxy axes
system. One way is to construct atable of x-values, compute the corresponding y-values, plot

the pairs of values as points and join them up with a nice, smooth curve. This can be quite
laborious and important points of the function can be missed.

An alternative method is to determine just a few critical points, enough to allow us to sketch
the graph and display any of its important characteristics. The critical points we shall
consider are the inter cepts with the axes and so-called stationary points.

(@ Interceptswith the Axes

Here we find where the graph cuts the horizontal and vertical axes:

(i). Determine the y-intercept by setting x=0 in y = f (x) and evaluating for y.
There will only be one value for functionsof theform y = f (x).

(ii). Determine the x-intercepts by setting y=0 in y = f(x) and solving for x.
There may be none, one or many.
Example

(24). Determinethe axesinterceptsof y = x* — x — 2.

Set x=0: y = -2
Set y=0: x> =-x-2=0
Using the quadratic formula
L (D E D - A2
2.(2)
=2 o -1.
y
1% O 2 X
E
Figure4

28



(b). Stationary Points

In the previous example, clearly a critical point is the apex or turning point of the graph.
Turning points, points where the graph dips to a minimum or rises to a maximum, are where
the graph is neither increasing nor decreasing; we say that the function is stationary.

At a stationary point we must have

Y _o.

dx
This gives us away of precisely locating maxima and minima; set

& _,

dx
and solve for x.

To determine the type of stationary point, we can examine the derivative either side of the
stationary point to see whether the function isincreasing or decreasing (recall p5).

For astationary point at some value X = X,, there are four possible configurations:

(1). Minimum Turning Point

X < X X = X X > X,

dy

-ve 0 +ve
dx

Direction of
graph \ _— /

(i). Maximum Turning Point

dy

+ve 0 -ve
dx

Direction of —_—
graph 7 N

29



(iif). Horizontal Point of Inflection (1)

X < X, X = X X > X
dy
=2 _ 0 _
i ve ve
Direction of
—
graph \ \

(iv). Horizontal Point of Inflection (2)

X < X X = X X > X,
ﬂ +ve 0 +ve
dx

Direction of
graph 7 5 7

Example

(25). Sketchthegraphof y = 3x°> — 5x°.

y-inter cept

x-inter cepts

Set x=0togivey=0.

Set y =0 and solvefor x.

3x°> - 5x3 =0

x® (3x?

andso x=0 or 3x* - 5
3x?
X2

X

Graph cuts horizontal axisat x

— 5)

Il
o

0

5
1.6667
+1.29

-1.29,0,+1.29 .
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Stationary points

gle

= 15x* — 15x?

15x* (x> - 1)
15x* (x = 1) (x + 1)

Derivative equalszerowhen x = -1,0,+1.

Now determine the types of stationary points.

Naturetable:

-2 -1 -05 0 +0.5 +1 +2
d
Y +ve 0 —ve 0 -ve 0 +ve
dx

Directi _—
o:‘rg(r:al,l;)f? 7 \ —> | O\ - /

Use the original function to compute the y-coordinates of the stationary points:

when x=-1 , y=+2 — (-1,+2) isamaximum turning point;
when x= 0 , y= 0 — ( 0, 0) isahorizonta point of inflection;

when x=+1 , y=-2 — (41, -2) isaminimum turning point.

Graph
y
+27
| L
—1.29/ 1 0 41 |+1.29
2t
Figure5

31



When given a function, the aim may not be to sketch its curve, but ssimply to determine its
maximum or minimum val ues.

Further Examples

(26). A ssimply supported beam of length L has a concentrated load W, a distance of a metres
from the left hand end.

The deflection y at a distance x along the beam is given by

Wb 2 2 3 L 3
= — (L - b - —(x -
y 6EIL{( )X — X° + b(x a) }

where E = Young's modulus and | = moment of inertia of beam.

Ifa=2m, b=3m, L =5m, determine where the maximum deflection occurs.

Wb L
Let—— =ksoy = ki(L® - b)x - x> + =(x - a)°
SEIL y {( ) 5 )}

Substitutein the valuesof a, band L to give y = k{lGx - X + g(x — 2)3}

Hence % = k{16 - 3x* + 5(x - 2)?}
X

k{16 — 3x* + 5(X* — 4x + 4)}

k{16 - 3x* + 5x2 — 20x + 20}

= kfox? - 20x + 36}

2k{x?> - 10x + 18}

Stationary pointswill occur when x*> — 10x + 18 = 0.
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Use the quadratic formula

with a=1,b = -10 ,c=18.

10 + /100 - 4()(18) _ 10 + /28
2 2 '

Thisgives x =

Hence x = 7.646 (which we can rule out as length of beam is only 5 metres) and
X = 2.354.

The nature table for this stationary point is

X = 2 X = 2.354 X =3

dx

Tangent line / \

which confirms that the stationary point is a maximum.

Maximum deflection occurswhen x = 2.354. Substitute thisvalueinto

y = k{l6x - X+ g(x - 2)3}

to give the maximum deflection as

y = 24.69K .
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(27). Water tanks are to be manufactured to hold one cubic metre. If the length of each tank
is twice its width, what should the dimensions of each tank be to keep the cost of
manufacture to a minimum.

We want to use as little material as possible in the manufacture of each tank to keep the
cost to aminimum. Hence we must consider the area of material used.
Define the variables as:

Let width of tank be x metres, length of tank be 2xmetres and the height of tank h

metres. A diagram will help in this type of question where the function to be optimised
has to be constructed.

2X

Surface area A of tank = bottom + front + back + two sides

A= 2x* + 2xh + 2xh + xh + xh
A = 2x® + 6xh

At present, A is a function of two variables x and h. We will have to eliminate one in
order to deal with afunction of asingle variable.

1

We are told the volume of thetankis1 m® so 2x°h =1 = h = e
X

Now replace hin terms of x in the above expression for A.

A = 2x* + 6x. 12 = 2x* + 3x7
X
Hence
3_
OI—A=4x—3x’2=4x—%=4X2 3
dx X X
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The derivativeiszerowhen 4x° — 3= 0 = x* = 0.75

Hence x = (0.75)* = 0.91m
A nature table will confirmthat A isminimisedat x = 0.91.

3

Theminimumarea A = 2(0.91)° + o9l 4,95 m?

12 = L > = 0.6 metres.
2X 2(0.91)

The height of thetank h

In summary, the dimensions of the tank are: base measurements 0.91 m and 1.82 m and
height 0.6 m to give a minimum surface area of 4.95 m?.
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Tutorial Exercises

Basic Differentiation

QL. (a).

(b).

Determine the average rate of change of y = 3x* + 1 for the following changes
inx:

. x:2 —> 3 @i). x: 2 —» 25
(iii). x: 2 —» 225 (iv). x: 2 » 21
(V). x: 2 — 201 (vi). x: 2 — 2.001 .

Example: part (i)

X 2 3 AX=3-2=1

y 13 28 Ay =28-13=15
ﬂ:§:15
AX 1

Using the rule for differentiating x", determine f’(x) and evaluate it when
x = 2. Compare your answer with those from part (a).

Q2. Differentiate the following functions:

@i).
(iii).
(V).

y = 3x+1 (i). y=2x"+3x-4
y = —6x+3x" (iv). y = 4x°> —x7?
X = 3t? -2t +1 (vi). x = (t* =t*)t .

Product Rule

Q3. Differentiate the following expressions, simplifying your answers where possible:

(i).
(iii).
().
(vii).
(i%).

y = x'sinx (i). y = x*cosx

y = x> ¢ (iv). y = e*sinx

y = xlInx (vi). y = sinx tanx

y = cosx Inx (viii).y = €*Inx

y = (X* +2x+1)(x-3) ®). y=(x¥*-1)(x-1) .
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Quotient Rule

Q4. Differentiate the following expressions, simplifying your answers where possible:

. X> —3X+ 2 .. Xx—1
). = —— i). =
M-y X+1 .y X2 +1
... sin X ) In X
@i). y = — (iv). y = —
X
sin2x . e*
V). y = (vi). y = :
COSX (x+1)

Product Rule and Quotient Rule

Q5. Differentiate the following expressions, ssmplifying your answers where possible:

W), y = e* cosx i), y = (x* +1) e

X (x+1)

Power Rule/ Chain Rule

Q6. Determinetheindicated derivative for each of the following functions:

(). y =5x-7)* , dy
dx

(i). y = 2(x*-17 . dy
dx

: ; . ds
(i), s = 4(t° -4t +2) : o
i _ 42133 ) Q
(iv). y = 5(5t-t°) : p
-t . du

V). u = (3t +1)° ' dit
Vi) R= -+ : ar
5(4x* - 7) dx

(vii). Over thepage. ..
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(vii). y = cos’x { = (cosx)*} : —Z

dx

. dX
viii). x = (1+sint)'™® : o
(viii) ( ) o
(ix). y = sin(100x) : dy
dx

du

X)) u=-e" : el
(x) .
. 2 du
xi). u = e -
(xi) .
xii). s = In(1+ 2t° : as
(xii) ( ) o
ii dx
(xii). x = cos(100xt + 40) : o
' 2 dx
(xiv). X = cos”(100zt + 40) : T
.3 ] du

(xv). u = 4sin®(60x — 20) : el
dx

Implicit Differentiation

Q7. Usingimplicit differentiation, determine ;ﬂ from each of the following equations:
X
(i). y* = x° (i), x*-y*> =1
(iii). 5x*+7y* -4 =0 (iv). 2x* -=3y®> = 6
(V). xy = 2 (vi). 2xy*> =5

(vii). xy+3x = 2 (Viii). X*y = xy* +y = 4 .



L ogarithmic Differentiation

Q8. Uselogarithmic differentiation to obtain the derivative % from the following
X
functions:
. y =3 (i). y = 2"
X2 . x*(5 + x)*
i) y = (x> +1 iv). = — 7
(i). y = ( ) )Y = =37
3 -1 % — x5
W y= X2 i y = X8 =X
(x + 4) (2x + 1%
(vii). y = xe¥sinx (viii). y = cos(x)cos(2Xx) cos(3x)
Parametric Differentiation
Q9. Findthefirst derivative % for the following parametric equations :
X
. x=1t, y=4lt
(i). x = 6t* , y = 4t> — 3t
1 1
i), x =t + = =t - =
(iii) ; y :
(iv). x = 4cost y = 2sint
V). x = 4t y = 4t?
' 1+ t2)% (1 + t?)?

Q10. Obtain the gradient of the curve defined by the following parametric equations at the

point indicated :
(). x =2t> + 3, y =t* athepointwheret = -1
(). x = =/t + 1 , y = /() athepointwheret = 3

(i) x

tant , y = sin’t atthepointwheret = %
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Q11. Given the parametric equations
x =2, y =1+ sn’t

show that

dy _ - _
3x& = 2J(y - (2 - vy).

Repeated Differentiation

d’y
Q12. Determine —;- when
dx
(). y=2x-3x*+1 (i). y = sin(2x)
(iii). y = cos(3x) (iv). y = e

Equations of Tangentsand Normals

Q13. Find the equations of the tangents and normals to the following curves at the points
indicated :

(). y=x2—2x,x=0

(i) y=x-1)(2x-1),y=0
(ii). y = (2x — 1) , x = 05

(iv). x2 + 4y? =5, (1, —-1)

v). y% = 8x, (2, —-4)

(vi). X% + 2y — 3xy = 2, (0,1)

(vii). X2 + y> — 8x + 6y = 0, (7, 1)
(viii). x=2cogt,  y=3sint, t=%

(X)) x =42 +t+2,y=t>-2t+3,t=0

(x). x=2¢int, y=cos2t, t:%.
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Q14. Showthat y = x2 - 3x% + 2x + 3 has gradient 2 at two points, one of which lies
ony = 2x — 1.

Hence show that y = 2x — lintersects y = x3 - 3x% + 2x + 3 a two points
only.

Q15. Thecurve y = x(1 - x2) intersectstheline x — 3y = 0 at three points. Show

that the tangents to the curve at two of these points are (respectively) paralel and
perpendicular to the tangent at the third point.

Curve Sketching

Q16. Sketch the graphs of the following functions, showing clearly axes intercepts, maxima,
minima and horizontal points of inflection:

x* = x®—2x?

(i) y=x-x"-x (ii). vy

x®+1 (iv). y = 3x* —4x* .

Gii). y

2 X

Q17. Determine the locations and types of the stationary points for the function y = x“e

Max/ Min

Q18. The speed , v, of acar (in m/s) isrelated to timet seconds by the equation
v = 3 + 12t - 3t% .

Determine the maximum speed of the car in kilometres per hour.

Q19. The deflection D (in zm) of a beam of length 10 metresis given by
D =2x* —50 x* + 300 x*

where x is the distance from one end of the beam. Find the value of x that yields the
maximum deflection.

Hint: You will need the quadratic formula x =
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Q20. An open water tank on a square base of length x m is to be made from sheet metal using
2 square metres of material. Show that the volume V of the tank is given by

Determine the dimensions of the tank that will give a maximum volume.

Q21. Cylindrical water tanks of radius r m are to be constructed to hold 0.8 cubic metres.
Show that the area A of the material used in manufacturing an open cylindrical tank is
given by

A:§+7rr2.
r

Determine the value of r which minimises A.

Q22. An open-topped rectangular tank of volume 36 m® isto be constructed. The base of the
tank has one side twice as long as the other. If the shorter side of the base has length x
metres:

(). show that the surface area of the tank, A m?, is given by

108
=)

A = 2x® +

(ii). determine the dimensions of the tank which minimises A.
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Answers

Al

A2.

A3.

A4,

A5.

(@).

(b).

(iii).
(V).

(iii).

(V).

(vii).

(ix).

(iii).

(V).

i) 15 (ii). 135
(iv). 12.3 (v). 12.03
12

3

—-6-3x77

6t -2

4x3sinx + x*cosx

(2x + x?) e
1+ Inx

COSX )
—— — sinxInx

X

3x? -2x-5

x> +2x-5
(x+1)?

X COSX — SinX

X2

2 C0S2X COSX + Sin2xsnx

cos’ X

e [(x—-1) cosx — xsinx]

X2

(iii).
(Vi).

(ii).
(iv).
(Vi).

(ii).
(iv).
(Vi).

(viii).

(x).

(ii).

(iv).

(vi).

(ii).

12.75

12.003

4x+ 3
12x% + 2x73

5t* — 3t?

3x%?cosx — x3sinx
e (sinx + Cosx)

cosx tanx + sinxsec? x

xe 7]
el Inx + =
X

3x? —-2x-1

1+ 2x — x>
(x* +1)?

1 - 2Inx

X e
(x+1)?

X (X* +2x+3)¢e

(x+1)°



AG.

AT.

A8.

(). 20(x-7)° (). 42 %% (x° —1)°
(iii). 20 (3t% — 4) (t° — 4t + 2)* (iv). 15 (5 2t) (5t — t2)?
18 . 64 x

W) - (3t +1)7 V). - 5(4x% - 7)°
(vii). —2 sinx cosx (viii). 100 cost (1+ sint)*®
(ix). 100 cos(100x) x). —-e”'

. 2 N - &
(xi). 2te (xii). 1220
(xiii). —100 7 sin (1007t + 40)
(xiv). =200 7 cos(100zt + 40) sin(100xt + 40)
(xv). 720 cos(60x — 20) sin®(60x — 20).
W = ). =

y
5X , 4x
(iii). _7_y (iv). 9y’
_Y A

(V). » (vi). oy

o (y+3) .. y(y-2x)
(vii). < (vii). X 2xy i1
0). 3*In(d)
(). 2**In(2)
(ii). 2x(x* + 1)X271((x2 + DI + 1) + x°)
(iv) (5 + x)°( 2 3 5 _ 30x(5 + x)?

B+ X lx 5+x 3+x) B+ x°



v X3\ X — 1[3 1 2 J X2 (3x% + 26X — 24)

_+ —
(x + 4)* | x 2(x = 1 X + 4 2(x + 43 Jx - 1

i) x*(3 - x)*(1 1 ~ 4
(2x + )% \2x  6(3 - x)  3(2x + 1)
_ 9 - 10x
6x7(3 — x*(2x + 1*
(vii). xeaxsinx(l + 3 + %j = e¥(sinx + 3xsinx + Xcosx)
X sinx

(viii).cos(x)cos(Zx)cos(Bx)(— 2sin(2x) - 3sn(3x) Q”XJ

cos(2x) cos(3x) COSX
which simplifiesto

— cos(x) cos(2x) cos(3x) (2tan(2x) + 3tan(3x) +tan(x))

. 1 N 4t - 1
A9. (1), — i).

Vo T

1
1+ = 2

t2 t© +1 , 1

I11). 1V). — —cott

(iii) L T PR (iv) >
t2

V) 2t(1 - t?)

C1 - 3t?

A10. (). Att = -1, ¥ -1

. B dy _
@i). Att = 3, ol 2

!
Q.
<
[EEN

Gii). Att =, > =~
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A12. (i).

(iii).

A13.
(i)-
(ii).

(iii).
(iv).
).
(vi).
(vii).
(viii).
(i%).

(x).

A16. ().

12X - 6 (i). —4sn(2x)

—9 cos(3x) (iv). 16e
TANGENT NORMAL
y +2x =0 2y = X
y-x+1=0 y +x=1
y+x—-05=20 y —x=—-05
y =0 X = 05
4y = x - 5 y = -4x + 3
y+x+2=20 y-x+6=20
y = 15x + 1 3y = =2x + 3
4y = -3x + 25 3y = 4x - 25
2y+3x:6\/§ 3\/§y—2\/§x:5
y + 2x =7 2y — x = 4
y+x:§ —y+x:l
2 2

Vertical intercept: y =0

1+ 5
Horizontal intercepts: x = T\/_ , Xx =20
Maximum: (-1,2)
Minimum: (1,-1)
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A16. (ii). Vertica intercept: y =0

Horizontal intercepts: x = -1 , x =0 , x = 2
Maximum: (0,0)
Minima (-0.693,-0.397) , (1.443,-2.833)

(iii). Vertical intercept: y =1
Horizontal intercept: x = -1

HPI: (0,1)

(iv). Vertical intercept: y =0
Horizontal intercepts:. x = 0 , x = 3
HPI: (0,0)

Minimum: (1,-2)
Al17. Minat (0, 0) andMax at (2, 4e?).
A18. Maximum speed is 15 m/s, which is 54 Km/hour.

Al19. x= 5.785 metres.

A20. 0.82 x 0.82x 0.41m
A21. Ay, = 379m? when r = 0634m,

A22. (ii). 3x6x2m



