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INTRODUCTION TO GRAPH THEORY

1. Introduction

In recent years graph theory has become established as an important area of mathematics
and computer science. The origins of graph theory however can be traced back to Swiss
mathematician Leonhard Euler and his work on the Konigsberg bridges problem (1735),

shown schematically in Figure 1.

Figure 1: Bridges of Konigsberg

K 6nigsberg was acity in 18" century Germany (it is now called Kaliningrad and isin

western Russia) through which the river Pregel flowed. The city was built on both banks of the
river and on two large islands in the middle of the river. Seven bridges were constructed so that
the city’ s inhabitants could travel between the four parts of the city; labelled P, O, R and S in
the diagram. The people wondered whether or not it was possible for someone to walk around
the city in such away that each bridge was crossed exactly once with the person ending up at
their starting point. All attemptsto do so ended in failure. In 1735 however Euler presented a
solution to the problem by showing that it was impossible to perform such ajourney. Euler
reasoned that anyone standing on a land mass would need away to get on and off. Therefore
each land mass would require an even number of bridges. In Konigsberg each land mass had an
odd number of bridges explaining why all seven bridges could not be crossed without crossing
one more than once. In formulating his solution Euler smplified the bridge problem by
representing each land mass as a point and each bridge as aline as shown in Figure 2, leading to



the introduction of graph theory and the concept of an Eulerian graph. A closely related

problem showed that if the journey started at one land mass and ended at another, crossing each

bridge exactly once, then only those two land masses could have an odd number of bridges.

Two other well-known problems from graph theory are:

Graph Colouring Problem: How many colours do we need to colour amap so that
every pair of countries with a shared border have different colours?

Travelling Salesman Problem: Given amap of severa cities and the roads
between them, isit possible for atravelling salesman to visit (pass through) each of
the cities exactly once?

Some of the applications of graph theory include:

communication network design

planning airline flight routes

using GPS to find the shortest path between two points
design of electrical circuits

modelling of the Worldwide Web.

2. Definitions
The Konigsberg bridge problem can be represented diagramatically by means of a set of

points and lines. The points P, O, R and S are called vertices, the lines are called edges

and the whole diagram is called a graph.

P

R

Figure 2: Graphical representation of the Konigsberg bridge problem



2.1 Verticesand Edges
A graph, G, isamathematical structure which consists of:

(). avetexsetV = V(G) whoseelementsare called vertices of G.

(i). anedgeset E = E(G) of unordered pairs of distinct vertices called edges of G.

Note that £ is actually amultiset in that some unordered pairs can be repeated to
represent more than one edge joining two vertices.

(iii). arelation that associates with each edge two vertices, which are not necessarily
distinct, called its endpoints.

Such agraphisdenoted G = {V(G), E(G)},orjustsmply G = {V, E}.

Example 1
Consider the graph G shown in the diagram below.

Figure 3: Graph with four vertices and five edges

The set V consists of the four vertices, 1, 2,3and 4,i.e. V(G) = {1, 2, 3, 4}.

The set E consists of thefiveedges, d = {1, 2}, e= {1, 4}, f={2, 4}, g = {3, 4}
and h={2, 3},ie E(G)={d, e, f, g, h}.

Hence, G = {V(G), E(G)} ={{1 2, 3, 4}, {d, e f, g h}}

Each edge is associated with two vertices called its endpoints.



For example, in Figure 3, vertices 1 and 2 are the endpoints of 4 and 4 is said to
connect vertices 1 and 2.

An edge-endpoint function on agraph G defines a correspondence between edges and
their endpoints.

Example 2
The edge-endpoint function for the graph in Figure 3 is given in the following table:

Edge Endpoints
d {1 2}
e {1, 4}
A {2 4}
g {3 4}
h {2 3}

Anundirected graph isagraph in which the edges have no orientation. Hence, in an
undirected graph the edge set is composed of unordered vertex pairs. In Figure 3 for
example, the edge {1, 2} isconsidered identical totheedge {2, 1}.

If X'and Y are vertices of agraph, G, then X and Y are said to be adjacent if they are joined
by an edge.

An edgein agraph that joins two verticesis said to be incident to both vertices.

Example 3
Referring to Figure 3, and the edge-endpoint table, we have the following adjacent vertices:

vertices 1 and 2 are adjacent
e vertices 1 and 4 are adjacent
e vertices 2 and 3 are adjacent.
e vertices 2 and 4 are adjacent
e vertices 3 and 4 are adjacent



The edges that are incident with pairs of vertices as follows:

e edgedisincident to vertices 1 and 2
e edgeceisincident to vertices 1 and 4.
e edgef isincident to vertices 2 and 4
e edgegisincident to vertices3and 4
e edgeisincident to vertices 2 and 3.

Two edges connecting the same vertices are called multiple or parallel edges.
In Figure 4 edges /' and g are parallel edges.

Figure 4: Graph containing parallel edges
Graphs like the one shown here, containing parallel edges, are called multigraphs and we shall

look at these in more detail later in the unit.

The order of agraph, G, denoted |V ( G ) |, isthe number of vertices contained in G.
InFigure3, |V (G)| = 4.

The size of agraph, G, denoted | E( G ) |, isthe number of edges contained in G.
InFigure3, |E(G)| = 5.



The degree of avertex X, written deg(.X), isthe number of edgesin G that are incident with .X.

InFigure 3, deg(1l) = 2, deg(2) = 3, deg(3) = 2 and deg(4) = 3.

Any vertex of degree zero is called an isolated vertex and avertex of degree oneisan
end-vertex.

Example 4
In the graph below vertex 5 is an isolated vertex and vertex 3 is an end-vertex.

1

5@ g

3

Figure 5: Graph containing an isolated vertex

A vertex is said to be even or odd according to whether its degree is an even or odd number.
In Figure 3 vertices 2 and 4 are odd while vertices 1 and 3 are even.

If the degrees of all the verticesin agraph, G, are summed then the result is an even number.
Furthermore, this value is twice the number of edges, as each edge contributes 2 to the total
degree sum. We have the following lemma:



2.1.1. TheHandshaking L emma
In any undirected graph the sum of the vertex degreesis equal to twice the number of edges, i.e.

D deg(X) = 2|E(G)]|

Xe 7(G)

Proof: Inagraph G an arbitrary edge{ X', Y} contributes1to deg( X' ) and 1to

deg(Y ). Hencethe degree sum for the graph is even and twice the number of edges.

Note: A corollary of the Handshaking Lemma states that the number of odd verticesin a
graph must be even. So, for example, we cannot have a graph with 5 even verticesand 5
odd vertices as the degree sum would be an odd number, contradicting the Handshaking
Lemma.

The degr ee sequence of an undirected graph G is a bracketed list of the degrees of all the
vertices written in ascending order with repetition as necessary.

Example5
The degree sequence of the graph in the diagram below is( 1, 2, 2, 3, 4).

A

C

Note that some texts define the degree sequence of a graph as the degrees of the vertices
written in descending order with repetition as necessary. In the above case we would have
(4,3,2,2,1).



2.2. Connected Graphs
A graph is said to be connected if it cannot be expressed as the union of two graphs. If a

graph is not connected it is said to be disconnected. The graph on the left is connected as
itis“inone piece” while the graph on the right is disconnected as it contains two distinct
components. See Section 4 for an aternative definition of connected.

P
0 R
D T
C
S
2.2.1. Cut-Points and Bridges

A vertex isacut-vertex, if removal of that vertex (and the edges through it) disconnects the

graph. A cut-vertex isaso called a cut-point or an articulation point.

Example 6
In the graph on the left vertex 2 isa cut-vertex asitsremoval disconnects the graph. The

resulting graph, on the right, has two connected components. Vertex 6 isalso a cut-vertex.

6
7 S I>7
4 3 8

Anedgeisabridge (or isthmus) if removal of that edge disconnects the graph.

Hereedge{ 2, 6}isabridge asits removal disconnects the graph.



3.Graph Structures

In this section we briefly look at different types of graphs.

3.1. Reqular Graphs

A graph G isregular if al vertices of G have the same degree. A regular graph where all
vertices have degree k isreferred to as a k-regular graph.

Example 7

O-regular: [
1-regular: o—©
2-regular:

The graph on the left is called a 2-regular graph on 3 vertices and the one on theright is
a2-regular graph on 4 vertices. Exercise: Sketch a 2-regular graph on 5 vertices.

Notes

().  TheHandshaking Lemmatells usthat the total degree of any graph is an even number,
i.e. twice the number of edges. Hence, it isimpossible to construct a k-regular graph,
where k is odd, on an odd number of vertices. For example, we cannot have a
3-regular graph on 5 vertices as thiswould give a degree sum of 15, violating the
Handshaking Lemma.

(i). A O-regular graph is called an empty graph.
(iif). Cycle graphs (see Section 3.3) are 2-regular graphs.
(iv). 3-regular graphs are called a cubic graphs.
Thereis only one 3-regular graph on 4 vertices. Can you sketch it?

There are two 3-regular graphs on 6 vertices. Can you sketch them?
Thereis no 3-regular graphs on 7 vertices. Why?



3.2. Complete Graphs
A complete graph, denoted K, , isagraph with n vertices all of which are adjacent to

each other.

K3

Ks

S B

The complete graph K, isregular and each of the n verticeshas degree n — 1. Hence,

the sum of the degreesis n (n — 1) and by the Handshaking Lemma the number of edgesin

i n(n-1)

K, is,
2

Exer cise: Check that the two properties stated above hold for the complete graphs shown.

10



3.3. Cycle Graph
A cycleon agraph starts at any vertex, travelling through the graph without repeating

vertices or edges before ending on the start vertex. In Example 5, BAEB and AEDBA are both
cycleswhile AEDBEA isnot acycle asthe vertex E is repeated.

A cycle graph, denoted C,, isagraph on n vertices, { v,, v, . . .,v,_;},Wwithn edges
{vo.,m}, {vi.,»}, . . . {v,_1, v}. Notethat C, contains asingle cycle through al the
vertices.

Y

Cs i i

C4 EI

C5 Q

Notes

(). In acycle graph every vertex has degree 2.

(i).  Thegraph C; contains a self-loop and we shall see later that aloop contributes two to
the degree of the vertex. Hence, the vertex in C; has degree 2 ensuring that the
Handshaking Lemma holds.

(iii).  Thegraph C, contains parallel edges.

A graph that contains no loops or paralel edgesis called asimple graph.

11



3.4. Bipartite Graphs

A bipartitegraph, G(V,, V,) isagraph whose vertices can be partitioned into two digoint

subsets 71 and V>, where no edge joins vertices that are in the same subset. A vertex in one of
the subsets may be joined to all, some, or none of the verticesin the other subset — see the
diagrams below. In the case where every vertex of J; isjoined to every vertex of V,then G is

called acomplete bipartite graph and is usually denoted K, . Herer and s represent the

number of verticesin V; and V> respectively. A bipartite graph is usually shown with the two
subsets as top and bottom rows of vertices or with the two subsets as left and right columns of
vertices.

V, Vi
14 v

2 2

The graph on the right is the complete bipartite graph, K, ; with 2 + 5 = 7 vertices and
2 x 5 = 10 edges. Ingeneral, acomplete bipartite graph K, has » + s verticesand

r X s edges.

A bipartitegraph K,  isregular if and only if » = s. The complete bipartite graph K, ,
shown below isregular as each vertex has degree 3.

12



A complete bipartite graph of theform K, | iscalled astar graph and K, ,isshown below.

Example 8

The graph on the left can be drawn as a 3-regular bipartite graph by partitioning the vertices into

thetwosetsV, ={ P, R, U, W},showninred,and V, = { O, S, T, V'},shownin

black. Although they look different they are in fact the same graph.

P R U w
ANz
pallaN
0 S T v
Notes

(i).  Two graphs with the same number of vertices and the same number of edges,
with the edges connected in the same way are said to be isomor phic.

(if).  If two graphs have different degree sequences the graphs are not isomorphic.

13



3.5. Tree Graphs:

A forest isagraph containing no cycles and a connected forest is called atree. Notethat a

graph on n vertices has fewest edgeswhen it isatree (asit has no cycles) and most edges when

itisacomplete graph. Below isaforest with four components.

P i

If the four components in the above forest are connected we obtain the tree below.

~_

Theorem

Let 7 beagraph with » > 1 vertices. The following statements are equivalent:

Tisatree.

T'iscycle-free and hasn — 1 edges.

T'is connected and has n — 1 edges.

T'is connected and contains no cycles.

T'is connected and each edgeisabridge.

Any two vertices of T are connected by exactly one path.

T contains no cycles, but the addition of any new edge creates exactly one cycle.

Note: From the above theorem it must be the case that afinite tree with » vertices must have

n — 1 edges.

14



3.6. Multigraphs
The diagram shows the graph

G={V,E}={{4,8,C D}, {{4,B},{B,C},{B,D},{C D},{C,D},{D, D}} }.

A

Thisis an example of amultigraph. A multigraph is agraph that allows the existence of
loops and parallel (multiple) edges. Note that not all texts allow multigraphs to have loops
and in the case when graphsinclude loops they are called pseudographs. We shall refer to
agraph with parallel edges and/or loops as a multigraph.

A loop isan edge that links avertex to itself. In the figure the edge (D, D) isaloop and
connects vertex D to itself.

If two vertices are joined by more than one edge then these edges are called parallel edges. In

the figure the edges (C, D) represent parallel edges.

Notes
(). We define aloop to contribute 2 to the degree of a vertex so that the Handshaking Lemma

holds for multigraphs. 1n the above figure vertex D therefore has degree 5. The degree sum of

thegraphis1+ 3+ 3+ 5 =12 which is twice the number of edges (6) as required by the
Handshaking Lemma.

(i). Some texts do not allow multigraphs to have loops.

15



4. Walks, Trails& Paths
A walk of length £ on agraph G is an alternating sequence of vertices( v, ) and edges( e, ):

Vo, €1y Vi, €5, Vo, €3, . . . €, V,

where v, and v,,, arebothincident to e, ,,. Note that the graph has & + 1 vertices and & edges.

i+1

Thelength of awalk isthe number of edgesin the walk.

For convenience, and ease of reading, we omit edges and use only vertices so that the walk

givenaboveiswrittenas vy, vy, v,, . . .V, 4, V,.

Example9
(). A walk on the graph below isgivenby: 1,5, 4, 3, 7, 1, 6 and haslength, L = 6.

6

Note: A walk can repeat both edges and vertices.

(i). A walkissaidto beclosed if itsfirst and last verticesarethe same, i.e. v, = v,.

A closed walk, of length 8, on the graph is given by: 1,54,371,6,5, 1

(iii). Atrail isawak whereall edges are distinct but vertices may be repeated.

A trail on the graph isgiven by: 1,54,3,7,1,6,5.

16



(iv).

(V).

(vi).

A closed trail iscalled acircuit.

A circuit onthegraphisgivenby: 1,2,3,1,5,4, 3,7, 1. Notethat no edges are
repeated but we are alowed to repeat vertices.

A path isatrail in which al vertices are distinct. Hence, in a path neither vertices nor
edges are repeated.

A path on the graph is given by: 1,5,4,3,7.

A closed path iscalled acycle.

A cycle on the graph is given by: 1,2, 3,4,5,1. Notethat no vertices or edges are
repeated.

Therefore, al paths are trailsand all trails are walks.

In terms of set theory, Paths c Trails ¢ Walks as shown below.

WALK
TRAIL

The information given above can be summarised in the following table:

17



Repeated Vertex | Repeated | Open | Closed Name
(Vertices) Edge(s)
Yes Yes Yes Open Walk
Yes Yes Yes | Closed Walk
Yes No Yes Trail
Yes No Yes | Circuit (Closed Trail)
No No Yes Path
No No Yes | Cycle (Closed Path)

Adapted from, “ Discrete and Combinatorial Mathematics” by R. P. Grimaldi.

Now that we have defined the term path we can provide an aternative definition, to that given
in Section 2.2, for a graph to be connected.

A graph is connected if given any two vertices v, and v, thereisapath from v, to v, .

Returning to the example in Section 2.2, reproduced below for completeness, thereis clearly a
path between all the vertices in the graph on the left and so it is connected. However, in the
graph on the right we are unable to, for example, find a path from vertex S to vertex P and so
the graph is disconnected.

P
0 R
D T
C
S

18



5. Eulerian and Hamiltonian Graphs

This section considers special ways of traversing graphs. Examples of graph traversal
problems are the Konigsberg bridges and Travelling Salesman problems.

5.1. Eulerian Graphs

Definition: An Euler circuit on agraph, G, isacircuit (closed trail) that uses every edge of G
exactly once. Note that we are alowed to use the same vertex multiple times, but we can only
use each edge once. A graphisEulerian if it hasan Euler circuit.

Definition: An Euler trail through agraph, G isan open trail that passes exactly once through
each edge of G. We say that G issemi-Eulerian if it hasan Euler trail. Note that every
Eulerian graph is semi-Eulerian.

Theorem: Let G be aconnected graph. Then G is Eulerian if and only if every vertex of G has
even degree.

Corollary: A connected graph is semi-Eulerian if and only if there are O or 2 vertices of odd
degree. Notethat if a semi-Eulerian graph has two vertices of odd degree then any Euler trail
must have one of them asitsinitial vertex and the other asitsfinal vertex.

19



Example 10

(). 2
NON-EULERIAN

Asthere are four vertices of odd degree the
graph is non-Eulerian.

(ii). 2 SEMI-EULERIAN
By the above corollary as there are two vertices

(1 and 5) of odd degree (i.e. degree 3) the graph
A is semi-Eulerian.

Euler trail must start at one of the odd degree
vertices and end at the other, e.g. 12342645615.

(ifi). 1 2 EULERIAN
5 All vertices have even degree and so, by the
above theorem, the graph is Eulerian.
4 3 Euler circuit: 1253451

The table below provides simple rules that count the number of odd degree verticesin agraph
to decide whether or not it has an Euler circuit or Euler trail.

No. of Odd Vertices | For a Connected Graph
0 Thereis at least one Euler circuit.
1 Not possible
2 No Euler circuit but at least 1 Euler trail.
More than 2 No Euler circuits or Euler trails.

The following algorithm is optional but it provides arelatively simple method for finding an
Euler circuit when one exists.



Fleury's Algorithm

If G isan Eulerian graph then using the following procedure, known as Fleury’s
Algorithm, it is always possible to construct an Euler circuit of G.

Starting at any vertex of G traverse the edges of G in an arbitrary manner according to the
following rules:

(). Erase edges as they are traversed and if any isolated vertices appear erase them.
(ii). At each step use abridge only if there is no aternative.
Note: Since every vertex in the Koénigsberg graph in Figure 2 has an odd degree it is not
possible to find an Euler circuit of thisgraph. It istherefore impossible for someone to walk

around the city in such away that each bridge is crossed exactly once and they end up at their
starting point.

5.2. Hamiltonian Graphs

Definition: A Hamiltonian cycle on agraph, G, isacycle (closed path) that uses every vertex
of G exactly once. Note that we do not need to use all the edges. A graph isHamiltonian if it
has a Hamiltonian cycle.

Note that some texts call a Hamiltonian cycle aHamiltonian circuit, i.e. acircuit which passes
exactly once through each vertex of agraph. Thisdefinition isidentical to the one above
because a circuit which does not repeat vertices, apart from the starting vertex, isacycle.

Definition: A trail that passes exactly once through each vertex of G and isnot closed is called
aHamiltonian trail. We say that G is semi-Hamiltonian. Note that every Hamiltonian graph
is semi-Hamiltonian.

While we have atheorem that provides necessary and sufficient conditions for a connected
graph to be Eulerian (i.e. * G isEulerian if and only if every vertex of G has even degree’)
thereisno similar characterisation for Hamiltonian graphs —this is one of the unsolved
problems in graph theory. In generd, it is much harder to find a Hamiltonian cycle than it
isto find an Eulerian circuit.

21



Example 11

1

(). 5

4 3
(i). 1 2

4 3
(iii). 4

4 3
Notes

NON-HAMILTONIAN

SEMI-HAMILTONIAN
Hamiltonian trail: 2143

HAMILTONIAN
Hamiltonian cycle: 12341
Note that we do not need to use all edges.

(1).  TheTravelling Salesman problem (TSP) searches for the most efficient (least total
distance) Hamiltonian cycle a salesman can take so that each of # citiesis visited.

To date, no solution to the TSP has been found.

(i).  AnEulerian circuit traverses every edge in agraph exactly once, and may repeat

vertices. A Hamiltonian cycle, on the other hand, visits each vertex in agraph

exactly once but does not need to use every edge.

22



6. Digraphs (Directed Graphs)
The graphs that we have met up to now have all been undirected graphs in the sense that the

edges have no orientation. In this section we extend the notion of a graph to include graphsin
which “edges have adirection”. These kind of graphs are known as directed graphs, or
digraphsfor short. Asshown in the diagram below the direction of an edge is defined so that
movement between two verticesis only possible in the specified direction. The terminology for
digraphsis essentialy the same as for undirected graphs except that it is commonplace to use
the term ar c instead of edge. Digraphs can be used to model real-life situations such asflow in
pipes, traffic on roads, route maps for airlines and hyperlinks connecting web-pages. We

have actually encountered the concept of a digraph before in an earlier unit when we looked at
relations on sets. I1n Section 3.3 of that unit, which was optional, we described how a

relation R could be represented diagrammatically by a digraph as an alternative to using an
arrow diagram or a matrix.

Example 12
The figure below shows a digraph on four vertices with six arcs.

Considering the arc labelled x, we say that x goesfrom 4 to D with 4 being theinitial vertex
and D the terminal vertex of x.

6.1. In-degree and Out-degr ee

e Thein-degree of avertex isthe number of arcsthat terminate at that vertex.
For example, the in-degree of vertex C in Example 12 is 2.

e Theout-degree of avertex isthe number of arcsthat originate at that vertex.
For example, the out-degree of vertex B in Example 12 is 3.

23



6.1.1. The Handshaking (Di)L emma
In any digraph the sum of the out-degrees, equals the sum of the in-degrees, equals the

number of arcs.

Proof: Every arc contributes exactly once to the out-degree total and exactly once to the in-
degreetotal.

The in-degree sequence of adigraph is abracketed list of the in-degrees of all the verticesin

ascending order with repetition as necessary.

The out-degr ee sequence of adigraph is abracketed list of the out-degrees of al the vertices

in ascending order with repetition as necessary.

Example 13
Consider the following digraph.

.

(). Determine the in-degree and out-degree of the vertices and show that the Handshaking

C

(Di)Lemma holds.

(if).  Write down the in-degree and out-degree sequences.

24



Solution
(). Create atable of in-degrees and out-degrees.

Total
Out-degree 3 3 2 0 8
In-degree 1 2 2 3 8

The sum of the out-degrees (8) equals the sum of the in-degrees (8) and these values
both equal the number of edges (8). The Handshaking (Di)Lemma therefore holds.

(i). Fromthetablein part (i), the in-degree sequenceis{ 1, 2, 2, 3} and the out-degree
sequenceis{ 0, 2, 3,3}.

6.2. Underlying Graph

The underlying graph of adigraph is the undirected graph obtained when the arrows are
removed from the digraph.

Example 14
The graph underlying the digraph in Example 12 is the undirected graph shown below.

Note that arcs have been replaced by edges.

A

25



6.3. Walks, Trails and Paths on Digraphs
The concept of walks, trails and paths carries over from undirected graphs to digraphs — see

Section 4. However, we must remember that on adigraph we can only move along an edge
in asingle direction, i.e. the direction in which the arrow is pointing.

Example 15
Find awalk, trail and path on the digraph shown below.

Solution

A walk is any route from one vertex to another along the edges of the graph. A walk can
repeat edges and vertices any number of times and can end on any vertex.

One exampleof awalk isgivenby: 1,5,6,1,7, 3,1, 5, 6.

A trail isawak where all edges are distinct but vertices may be repeated.
One example of atrail isgivenby: 1,5,6,1, 7, 3.

A path isatrail in which all vertices are distinct.
One example of apath isgivenby: 1, 5, 6.

26



7. Adjacency Matrices

Up to now we have only considered graphs where the number of edges and verticesisrelatively
small so that they can be easily be shown in diagram form. However, as graphs become large it
isno longer feasible to display them visually. When storing a graph on a compuiter it is useful
to represent it in matrix form, as the calculation of paths, trails and circuits, for example, can
easily be performed. In this section we look at adjacency matrices for both undirected and
directed graphs.

7.1. Adjacency Matrix of an Undirected Graph

In Section 2 we defined an undir ected graph to be a graph in which the edges have no
orientation. Hence, all edges are bidirectional. For example, in the graph shownin
Example 14 theedge { 4, B} isconsidered identical to theedge { B, 4} . We now look

at how to generate adjacency matrices for undirected graphs.

If G isagraph with n verticesits adjacency matrix, 4 isdefined asthe n x n matrix

whose ij-th entry is the number of edgesjoining vertex i and vertex ;.

Example 16
Determine an adjacency matrix for following graph.

1 2

27



Solution
The graph has 4 vertices and so the adjacency matrix will have dimension, 4 x 4.

The entries of the matrix are determined as follows:

e 0 edgesconnect vertex 1 to vertex 1, so the entry in Row1l/Columnlisa‘0’.
e 1 edge connects vertex 1 to vertex 2, so the entry in Row1l/Column2isa‘l’.
e 2 edges connect vertex 1 to vertex 3, so the entry in Rowl/Column3isa‘?’.
e 0 edges connect vertex 1 to vertex 4, so the entry in Rowl/Columnd isa‘0’.

1 2 3 4

e 1 edge connects vertex 2 to vertex 1, so the entry in Row2/Columnlisa‘l’.
e 0 edges connect vertex 2 to vertex 2, so the entry in Row2/Column2isa‘0’.
e 1 edge connects vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’.

e 1 edge connects vertex 2 to vertex 4, so the entry in Row2/Column4 isa‘1’.

12 3 4
0120
A = 1 011

A W DN P

e 2 edgesconnect vertex 3to vertex 1, so the entry in Row3/Columnlisa‘?’.
e 1 edge connects vertex 3 to vertex 2, so the entry in Row3/Column2isa‘l’.
e 0 edges connect vertex 3 to vertex 3, so the entry in Row3/Column3isa‘0’.

e 0 edges connect vertex 3 to vertex 4, so the entry in Row3/Column4 isa‘0’.

12 3 4
1/0 1 2 O

A=2/1 011
312 1 00
4\ .
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e 0 edges connect vertex 4 to vertex 1, so the entry in Row4/Columnlisa‘0’.
e 1 edge connects vertex 4 to vertex 2, so the entry in Row4/Column2isa‘l’.
e 0 edges connect vertex 4 to vertex 3, so the entry in Row4/Column3isa‘l0’.
e 0 edges connect vertex 4 to vertex 4, so the entry in Row4/Columnd isa‘0’.

12 3 4
1/0 1 2 O
A4=2/1 01 1]
312100
410 1 0 O

Thisisthe adjacency matrix for the graph.

Notes

(i). A graph can be represented by several adjacency matrices as different labelling
of the vertices produces different matrices.

(if).  Inthematrix 4, theentry a,; recordsthe number of edgesjoining verticesi and,.

(iii).  For an undirected simple graph: Sum of Row j = Sum of Column j = Degree of vertex; .
(iv). The adjacency matrix for an undirected graph is symmetric,i.e. 4 = A" .

(v).  Theentries on the main diagonal are al 0 unless the graph has loops.

Example 17
Given an adjacency matrix we can construct the associated graph, G.

Determine the graph corresponding to the adjacency matrix below,

12 3 4
1/0 2 0 1
A= 22 211
3101 01
411 1 1 0
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Solution

The matrix has dimension 4 x 4 and so the graph has 4 vertices.

Note that aloop is defined to contribute 2 to the degree of avertex. This approach
ensures that the Handshaking Lemma holds for multigraphs.

We proceed as follows processing one row of the matrix 4 at atime:

e Entry in Rowl/Columnlisa‘0’ so 0 edges connect vertex 1 to vertex 1.
e Entry in Rowl/Column2isa‘2 so 2 edges connect vertex 1 to vertex 2.
e Entry in Rowl/Column3isa‘0’ so 0 edges connect vertex 1 to vertex 3.
e Entry in Rowl/Column4isa‘l so 1 edge connects vertex 1 to vertex 4.

3¢ 4

e Entry in Row2/Columnlisa‘2’ so 2 edges connect vertex 2 to vertex 1.
e Entry in Row2/Column2 isa ‘2’ so vertex 2 has a self-loop.

e Entry in Row2/Column3isa‘l’'so 1 edge connects vertex 2 to vertex 3.
e Entry in Row2/Column4isa‘l’'so 1 edge connects vertex 2 to vertex 4.
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e Entry in Row3/Columnlisa‘0’ so 0 edges connect vertex 3 to vertex 1.
e Entry in Row3/Column2isa‘l’so 1 edge connects vertex 3 to vertex 2.
e Entry in Row3/Column3isa‘0’ so 0 edges connect vertex 3 to vertex 3.
e Entry in Row3/Column4 isa‘1’ so 1 edge connects vertex 3 to vertex 4.

e Entry in Row4/Columnlisa‘l’ so 1 edge connects vertex 4 to vertex 1.
e Entry in Row4/Column2isa‘l’ so 1 edge connects vertex 4 to vertex 2.
e Entry in Row4/Column3isa‘l’ so 1 edge connects vertex 4 to vertex 3.

e Entry in Row4/Column4 isa ‘0’ so 0 edges connect vertex 4 to vertex 4.

The graph corresponding to the adjacency matrix is therefore:

7.2. Adjacency Matrix of a Digraph

The adjacency matrix of adigraph having n verticesisa n x n matrix. For each directed
edge{v;, v,},i.e arow fromvertex v, tovertex v, weplacea‘l’ at the i" row,

;™ column position. Otherwise we placea ‘0’ at the appropriate position in the matrix.



Example 18
Determine an adjacency matrix for the digraph shown below,

log— >Q 2

A

N
w

Solution

The digraph has 4 vertices and so the adjacency matrix will have dimension 4 x 4.

Thereisan arc from vertex 1 to vertex 2, so the entry in Rowl/Column2isa‘l’
Thereisan arc from vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’
Thereisan arc from vertex 3 to vertex 2, so the entry in Row3/Column2isa‘l’
Thereisan arc from vertex 3 to vertex 4, so the entry in Row3/Column4 isa‘l’

Thereisan arc from vertex 4 to vertex 1, so the entry in Row4/Columnlisa‘l’

All other entriesin the adjacency matrix will be zero

From the calculations above an adjacency matrix for the digraph is therefore:

12 3 4
1/0 1 0 O
A4=2/0010
301 01
411 0 0 O

The total number of 1'sin an adjacency matrix equals the number of arcsin the digraph.

In general, the adjacency matrix is not symmetric for adigraph.
The number of 1'sinrow i of an adjacency matrix corresponds to the out-degr ee of
vertex i.

The number of 1'sin column j of an adjacency matrix corresponds to the in-degr ee of
vertex ;.
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7.3. Eulerian Digraphs

A digraphisEulerian if it is connected and the in-degree of each vertex equalsits out-degree.

Equivalently adigraph is Eulerianif it is connected and there exists a closed trail (circuit)
which uses each arc exactly once. Vertices however, can be repeated. This definitionis
essentially the same as for undirected graphs, see Section 5.1, except that we can only traverse
the graph in the direction of the arrows.

Example 19
Consider the following digraph, D.

log— >Q 2

A

ol
N

(). Determine an adjacency matrix for D.

(if).  IsD Eulerian? Either state an Euler circuit or explain why the
D isnot Eulerian.

Solution
(i).  Thedigraph has5 vertices and so the adjacency matrix will have dimension 5 x 5.

e Thereisanarc from vertex 1 to vertex 2, so the entry in Rowl/Column2isa‘l’
e Thereisan arc from vertex 2 to vertex 3, so the entry in Row2/Column3isa‘l’
e Thereisanarc from vertex 2 to vertex 4, , so the entry in Row2/Columndisa‘l’
e Thereisan arc from vertex 3 to vertex 4, , so the entry in Row3/Columnd isa‘l’
e Thereisan arc from vertex 4 to vertex 2, , so the entry in Row4/Column2isa‘l’
e Thereisan arc from vertex 4 to vertex 5, so the entry in Row4/Column5isa‘l’
e Thereisan arc from vertex 5 to vertex 1, so the entry in Row5/Columnlisa‘l’

e All other entriesin the adjacency matrix will be zero.
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The adjacency matrix is therefore,

a b~ w N R

R O O O O B
Or OO0 Fr N
O OO PFr O Ww
O O Fr +r o +
O r O O O O

(if).  Recal that the row sums of 4 give the out-degrees while the column sums provide the
in-degrees of the vertices. We construct the following table:

Vertex | Out-degree | In-degree
1 1 1
2 2 2
3 1 1
4 2 2
5 1 1

Thisdigraph is Eulerian as the out-degree of each vertex isthe same asitsin-degree.

An Euler circuitisgivenby: 1,2, 3,4, 2, 4,5, 1.

7.4. Hamiltonian Digraphs

For adigraph to be Hamiltonian it must be connected and include a cycle (closed path) that
uses every vertex of G exactly once. Such acycleiscalled aHamiltonian cycle and need not
use every arc of the graph.

Example 20
A Hamiltonian cyclefor the digraph in Example 19 is, 1, 2, 3, 4, 5, 1. We have been able to
visit each vertex exactly once and return to the start vertex.
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8. Adjacency Matrices & Paths

Adjacency matrices can be used to determine the number of paths of different lengths
between vertices.

In an adjacency matrix the entry at position (i, ;) corresponds to the number of paths of
length 1 between vertex v, and vertex v ;. Itisalso possible to construct matrices that provide

information on paths of length other than 1 between vertices.

For example, to calculate the matrix for paths of length 2 we must square the matrix 4, i.e.
caculate 42 = 4 x 4.

In general, if we calculate k£-th power of the adjacency matrix 4 the entry at position (i, ;) of

the matrix 4° indicates the number of paths of length k between vertex v, and vertex v T

Example 21
Let D be adigraph with 5 vertices as shown:

1 s W)

50 4

An adjacency matrix is given by

ga h w N R

O OO0 o0 o K
R OO0 OoORFrR N
O O 0O o o w
O O O+ b P
O O Fr O kL O

If apath of length 1 exists between two vertices (i.e. vertices are adjacent) then thereisalin
the corresponding position in the adjacency matrix, A. Here, for example, inspection of 4
reveals the following paths of length 1:
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e fromvertex 1tovertices2, 4 and 5
e from vertex 2 to vertex 4
e fromvertex 3to vertex 5

e from vertex 5 to vertex 2.

There are no paths of length 1 from vertex 4 to any of the other vertices.

To calculate paths of length 2 the adjacency matrix, 4, ismultiplied by itself to give 42, i.e.

12345
1(0 1010
. 2(00000
3]0 1000
4/0 0000
50 0010

The matrix shows that there are only four paths of length 2 in the digraph:

e from vertex 1to vertex 2,
e from vertex 1to vertex 4,
e from vertex 3to vertex 2

e from vertex 5 to vertex 4.

In general, the matrix of path length k is generated by multiplying the matrix of path length
k — 1 by the matrix of path length 1, i.e. the adjacency matrix, A.

We say that adigraph is strongly connected if thereis a path from every vertex to every other
vertex.

9. Weighted Graphs

The edgesin agraph can be weighted or unweighted. In aweighted graph a non-negative rea
number is assigned to each edge, ¢, and is called the weight of e, denoted w(e). These weights
may correspond to the lengths of roads (edges) between towns (vertices) in a graphical
representation of a map and we may be required to find the length of the shortest path from
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town A4 to town L, say. The problem isthen to find the path from 4 to L with minimum weight.
An example of a shortest path problem is the well-known Travelling Salesman Problem.

Example 22
The shortest path from A4 to L has length 17 and is shown in bold in the figure.

( from Introduction to Graph Theory, Fourth Edition, Wilson R.J., 1996 )

9.1. Adjacency Matrix of an Undirected Weighted Graph
The adjacency matrix is calculated in the same way as for the previous examples except that

instead of placing a1 in the i row and /™ column when vertices v,and v, are adjacent we

enter the weight.
Example 26
F 0600 7
. 2 6 02 30
R A=/020 40
2 0 3406
T 6 S 7 0060
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10. I somor phisms between Graphs

Graphs G and H are said to be isomor phic (essentially the same graph) if there is a one-one
and onto map,

0:(G)— V(H)suchthatedge{ 4,B} € E(G) = edge{ &(4) &(B)} € E(H).
In other words there is a one-one correspondence between the vertices of G and the vertices

of H with the property that the number of edges joining any two vertices of G isequal to the
number of edges joining the corresponding vertices of H.

Example 27
The graphs G, and H; below areisomorphic.
3
Gy 2 3 H
4 5 5
1
1

In graph G: vertex 1 has degree 4 and isjoined to vertices 2, 3, 4 and 5.
In graph G1: vertex 2 has degree 3 and isjoined to vertices 1, 3, and 4.
In graph G1: vertex 3 has degree 3 and isjoined to vertices 1, 2, and 5.
In graph G1: vertex 4 has degree 2 and isjoined to vertices 1 and 2.

In graph G1: vertex 5 has degree 2 and isjoined to vertices 1 and 3.

It is easily checked that thisis the same for graph H; and so the graphs are isomorphic.
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Hence, the adjacency list isthe same for both graphs,

Vertex | Adjacent
vertices

2,3,4,5
1,34
1,25
1,2
1,3

g | W N P

Example 28
The graphs G, and H, below are not isomorphic as they have different degree sequences.

G H>

Both graphs have the same number of vertices, i.e. 7. However, Graph G, has degree sequence
(2, 2, 2, 3, 3, 3,3) while Graph H> has degree sequence (2, 2, 3, 3, 3, 3, 4). Alternatively you
could show that the two graphs have different adjacency lists.
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11. Vertex (Graph) Colouring

The most well-known graph colouring problem is the Four Colour Problem which was first
proposed in 1852 when Francis Guthrie noticed that four colours were sufficient to colour a
map of the counties of England so that no two counties with a border in common had the same
colour. Guthrie conjectured that any map, no matter how complicated, could be coloured using
at most four colours so that adjacent regions (regions sharing a common boundary segment, not
just a point) are not the same colour. Despite many attempts at a proof it took until 1976 when
two American scientists, Appel and Haken, using graph theory produced a computer-based
proof to what had become known as the Four Colour Theorem.

In graph theory terms vertex (graph) colouring problems require the assignment of colours
(usualy represented by integers) to the vertices of the graph so that no two adjacent vertices
are assigned the same colour (integer).

Definition

A k-colouring of agraph isa colouring in which only k& colours (numbers) are used. The
chromatic number for agraph isthe minimum number of colours (numbers) required to
produce a vertex colouring of the graph. The chromatic number of agraph G is denoted by

2(G).

Example 29
A graph with no edges has chromatic number 1 while the complete graph K, has chromatic

number n. Inthefigures below weassigna‘l’ to the graph with no edges on the left and say
that it is 1-colourable while we assign the numbers 1, 2, 3, 4, 5 to the complete graph K5 on the
right and say that it is 5-colourable. We have that ;((K5 ) = 5.

.H
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| dentifying the chromatic number in the two cases shown above is straightforward. In general,
however determining the exact chromatic number of agraph is a hard problem and no efficient
method exists. The only approach that would identify the chromatic number of a graph G with
absolute certainty would involve investigating all possible colourings. Clearly as graphs
become larger this method becomes impractical, even using the most powerful computers that
are available. The best that can be doneis to determine lower and upper bounds on the
chromatic number and techniques such as looking for the largest complete subgraph in G (for a
lower bound) and the Greedy algorithm (for an upper bound) enables usto do so. The Greedy
algorithm however is very inefficient but is adequate for ‘small’ graphs with the aid of a
computer.

Summary
This unit has provided an introduction to the important topic of graph theory and you should

now be ableto:

e identify different types of general graphsincluding: undirected and directed graphs;
simple graphs and multigraphs.

e understand basic terminology associated with graphs, including: connected, vertices,
edges, arcs, adjacent, incident, degree sequence, in-degree, out-degree, etc.

e identify different types of specific graphs: regular graphs, complete graphs, cycle
graphs, bipartite graphs, tree graphs and weighted graphs.

e dtate the Handshaking Lemmas for both undirected graphs and digraphs.

e identify walkstrails and paths on undirected graphs and digraphs.

e determine whether or not a graph (undirected or digraph) is Eulerian and identify
an Euler circuit if one exists.

e determine whether or not agraph (undirected or digraph) is Hamiltonian and, for
“small” graphs, identify a Hamiltonian cycle if one exists.

e construct adjacency matrices for undirected graphs and digraphs.

e construct an undirected graph or digraph given an adjacency matrix.

e understand what is meant by isomorphic graphs.

e understand what is meant by a graph colouring and the chromatic number of a graph.
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INTRODUCTION TO GRAPH THEORY - TUTORIAL

QL. (). Which of the following graphs are connected?

B C Ceo D
A D
4® E
C). y B (d). A B
@

(if).  If agraphisnot connected state its connected components.

(iii).  Which are ssimple graphs and which are multigraphs?

Q2.  Sketch the following graphs:

(i).  4-regular on 6 vertices (i). Ks (iii).

(V). Ke V).  Kos (vi).

Cs

K4,4 .

42



Q3. (). Define the terms walk, trail and path on a graph.

(i). Findawalk, closed walk, trail, closed trail (circuit), path and a closed path
(cycle) on the graph below.

A B

Q4. (). Define the term Euler circuit on agraph and find an Euler circuit on each of the
graphs below if one exists. If none exist explain why not.

(i1).  Definethe term Hamiltonian cycle on agraph and find a Hamiltonian cycle on
each of the graphs below if one exists. If none exist explain why not.

A B P 0 R
F & % @ C m
E D T S

Q5.  Sketch the undirected graph G defined below and construct an adjacency matrix for G.

G={V,E}={ {12345}, {{12,{13},{1,5.{L5},
{2,3},{2,3},{3,4},{3,5}.{4,5} } }.
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Q6. Consider the adjacency matrix

X

1l
g A WN PR
R P P O O B
OrRr PR OoOONDN
O OO R R, W
P O O R - &
O r OO R O

(). Sketch the associated undirected graph, G, clearly labelling all the vertices.

(if).  Write down the degree sequence for G.

(iii).  Show that the Handshaking Lemma holds for G.

(iv). IsG Eulerian? Justify your answer and give an Euler circuit if appropriate.

(v). IsG Hamiltonian? Justify your answer and give a Hamiltonian cycle if
appropriate.

(vi). Removal of an edge from G resultsin a bipartite graph. Identify which edge
should be removed and sketch the resulting graph.

(vii). How many edges need to be added to G to obtain a complete graph?
| dentify which edges need to be added and sketch the resulting graph.

Q7. Givenagraph, G, its complementary graph denoted G , is obtained from G by
replacing edges with non-edges and non-edges by edges. If G isgiven by the graph
below sketch its complementary graph, G .

Q8. A graph, G, isk-regular if al vertices have degree k. Calculate the degree sum for a
k-regular graph with n vertices and the number of edgesin G.



Q9. Inasimplegraph, with at least two vertices, there are at |east two vertices of the
same degree. Thisresult is not true for multigraphs. Sketch athree vertex
multigraph with al vertices of different degree.

Q10. Consider the graph, G below. Explain why G does not have a Hamiltonian cycle.

Q11. Consider the graph, G, below,

P 0
S R
(). Is G Eulerian? Either state an Euler circuit on G or explain why G is
not Eulerian.

(i).  IsG Hamiltonian? Either state a Hamiltonian cycle on G or explain

why G isnot Hamiltonian.

Q12. Sketch asimple graph G whose vertices al have even degree but G is not Eulerian.
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Q13. Consider the graph G below,

yd
U R
T S
(). Is G Eulerian? Either state an Euler circuit on G or explain

why G isnot Eulerian..

(i).  Is G Hamiltonian? Either state a Hamiltonian cycle on G or

explain why G is not Hamiltonian.

Q14. Determine whether the complete graphs K77 and K3, are Eulerian.

Q15. Determine an adjacency matrix and an incidence matrix for the graph shown below,
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Q16. Anadjacency matrix for an undirected graph, G isgiven by,

2 1 1 3

1 0 21
4 =

1 2 01

3110

Without drawing G, and using only the matrix 4, answer the following:

(). How many edges does G have?

(i).  How many paths of length 2 join Vertices 1 and 4.

Q17. How many edges does atree, T, with 5000 vertices have?

Q18. Determine which complete bipartite graphs, K, aretrees.

m,n

Q19. (i). Determine the conditions on » and s that will guarantee that the complete
bipartite graph, K, ; will have an Euler circuit.

(if).  How many edges and vertices does the complete bipartite graph K, | have?

Give you answer in terms of » and s.

Q20. Explaining your answer state whether a graph on 7 vertices can have each vertex of
degree5.

Q21. Consider agraph G on 12 vertices where each vertex has degree 7. How many
edges does G have? Explain your answer.
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Q22. (i) Sketch the digraph
D={{1234}{{12,{1,4},{2,3},{2,4},{3,2},{3,4},{4,1} } }.
(i) Determine an adjacency matrix for D.
(iii).  Calculate the in-degree and out-degree of each vertex.
(iv). State the Handshaking (Di)Lemma and show that it holds for D.
(v). Statewhat it meansfor adigraph to be Eulerian.
(vi). Isthedigraph, D, Eulerian? Explain your answer.
(vii)  Calculate the matrix 4° and explain the meaning of the entry at position

(1,2)in 4°.

Q23. Consider the following adjacency matrix, 4, for adigraph, D

A

Il
- O O+ O
SO+ O O
= » O O O
o O+ O B
o O+ B+ O

Without drawing D, and using only the matrix 4 answer the following:

(). Calculate the in-degree and out-degree of each vertex.

(ii).  Determine whether D is Eulerian. Explain your answer.

(iii).  How many arcs (edges) arethere in D? Explain your answer.
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Q24. Determine an adjacency matrix for the digraph below.

Q25. Consider the following adjacency matrix

1
0
0
1
0
0

R OO0 o r N
O OO0 oo W
R O o r o P
O O Fr O Fr O

(). Sketch the associated digraph, D, clearly labelling the vertices.

(i1).  Determine whether the digraph is Eulerian and state an Euler circuit if one exists.

Q26. (i). Inacyclegraph, C,, state how the number of verticesis related to the number
of edges.

(if).  Sketchthe cycle graphs C; and C;.

49



Q27. Consider the following multigraph, G.

Q2s.

0}

(ii).

(iii).

(ii).

(iii).

(iv).

(V).

(vi).

Write down an adjacency matrix for G. ( Note that for an undirected graph we
define aloop to contribute 2 to the degree of avertex ).

Interpret the row sum of the entriesin row j of the adjacency matrix.

What is the degree of Vertex 3? Explain your answer.

Sketch the complete graph Ks and label the vertices P, O, R, Sand T.

Construct an adjacency matrix for Ks.

Describe an adjacency matrix for the general complete graph, K,,.

Interpret the row sum of the entriesin row j of the adjacency matrix for K,,.

How many 1’'s are contained in the adjacency matrix for ageneral K,,?

Interpret the result in part (V).
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Q29. Letd={1,2, 3, 4,5, 6} and definetherelation R asfollows,

R={(11), (14,15, (23) (24, (259),
(3.2,(3.3.(34),(4.1),(4,2),(423),(44,(5,1),(5,2), (55} on4.

(). Sketch the digraph, D, that represents R.

(i).  Determine an adjacency matrix for R.

Q30. (i). Sketch the directed (digraph) and undirected graphs corresponding to the
following adjacency matrix.

b

Il
g D w N P
P P O Fr O kR
R OFr, O Fr N
P P OFR, O W
P O kR, O R &
O r P P P O

(i1).  For the undirected graph determine the degree of each vertex. Then for the
digraph determine the in-degree and out-degree of each vertex.

(iii).  For both undirected and directed graphs determine whether they are Eulerian

and/or Hamiltonian.

Q31. Explainwhy it isnot possible to have the following adjacency matrix for asimple
graph, (asimple graph is undirected, unweighted and has no loops or paralel edges),

01110
1 0101
4=101011]|
11100
10110
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Q32. Determine whether the two graphs below are isomorphic.

Q33. What isthe chromatic number of acycle graph, C,?

52



ST O}

(ii

(ii

S2.(1).

(iii).

SOLUTIONS

Graphs (b) and (c) are connected as there is a path between any two of
their vertices.

). Graph (a) isdisconnected and its disconnected components are { ABCD}
and { EF}. Graph (d) is disconnected and its disconnected components are
{ABE} and { CD}.

i). Graphs(a) and (b) are smple graphs.
Graph (c) isamultigraph with multiple (parallel) edges{ B, C} and{B, C}.

Graph (d) isamultigraph with multiple (parallel) edges{ C, D} and {C, D}
and aself-loop { B, B}.

S
o
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(V).

().

(ii).

(vi).

A walk on agraph is any route from one vertex to another along the edges of the

graph. A walk can repeat edges and vertices any number of times and can end

on any vertex.
If awalk ends on the vertex it started fromit is called a closed walk.

A trail isawak where all edges are distinct but vertices may be repeated.
If atrail endsonits starting vertex it iscalled aclosed trail or acircuit.

A path isatrail in which al vertices are distinct. Hence, in a path neither
vertices nor edges are repeated.
If apath ends on its starting vertex it is called a closed path or acycle.

A B

An example of awalk isgiven by: EHBDEHABAF.
An example of aclosed walk isgiven by: EHBDEHABAFE.

An example of atrail isgiven by: EHBDEFA.
An example of aclosed trail, or circuit, isgiven by: EHBDEFAE.

An example of apath isgiven by: EHBD.
An example of aclosed path, or cycle, isgiven by: EHBDE
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4. A B P 0 R
F & >'Q; ®C W
E D T S

).

An Euler circuit onagraphisacircuit (closed trail) that uses every edge
exactly once. Note that we are alowed to use the same vertex multiple times
but we can only use each edge once.

A graphis Eulerian if it has an Euler circuit.

The graph on the left is Eulerian, and has an Euler circuit, as al vertices are of
even degree. An Euler circuit isgiven by: EFABHEDCBDHAE.

The graph on theright is Eulerian, and has an Euler circuit, as al vertices are of
even degree. An Euler circuit isgiven by: PORSQTP.

(if). A Hamiltonian cycle, also called aHamiltonian circuit, isacircuit (closed
trail) which passes exactly once through every vertex of agraph G and G is
called aHamiltonian graph. We do not need to use all the edges.

The graph on the left is Hamiltonian.
A Hamiltonian cycleisgiven by: ABCDHEFA.

The graph on the right is not Hamiltonian as, no matter where we start, we need

to visit vertex Q twice to get back to the start vertex. Starting at vertex Q will
not help asin this case we would visit O three times!
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S5. The graph, G, has 5 vertices and so the adjacency matrix, 4, will be 5 x 5.

12 3 45

1/0 1 1 0 2

201 0200

5 A=31 2 011

2 400 101

4 502 0110

3
123 45
10 01 11
210 0110
$6. (i). The adjacency matrix is 5 x 5 and so G has 5 vertices.

=3/11000
4/1 1 00 1
501 0010

Vertex 1 isadjacent to vertices 3, 4, and 5 so join vertex 1 to each of these three vertices.
Continue in this manner to obtain the graph below.

(ii). Degreesequence, (2, 2, 2, 3, 3).

(iii). By the Handshaking Lemma Zn:deg(vj) = 2| E(G)| where | E(G)| isthe number of
=

5
edgesin G. Wethereforehave ) deg(v,) = 2 + 2 + 2 + 3 + 3 = 12 and
=1

2| E(G)| = 2 x 6 = 12. Hence, the Handshaking Lemma holds for G.
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(iv). G isnot Eulerian as not all the vertices have even degree.

(v). G isHamiltonian aswe can visit every vertex of G exactly once and return to the start
vertex. A Hamiltonian cycleis: 154231.

(vi). Removal of edge (4, 5) resultsin the bipartite graph below.

1
5
4 2
3

(vii). Adding thefiveedges (1, 2), (2, 5). (3, 4), (3, 5), (4, 5) results in the complete graph Ks.

1

S7.  The complementary graph, G is

S8.  Theregular graph G hasn vertices all of degree £ and so the sum of all the degreesis nk.

By the Handshaking Lemma Zn:deg(vj):2|E(G)| where | E(G)| isthe number of
j=1

edgesin G. Wethereforehave nk = 2|E(G)| = |E(G)| =%.
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0.

S10.

S11.

S12.

In the graph below; deg(P) = 4, deg(Q) =5, deg(R) =3

Q

A Hamiltonian cycle visits each vertex of a connected graph exactly once and returns to
the starting vertex. Note that G consists of two subgraphs PUV and QRST connected by
abridge WX. If we start on the left-hand-side (PUV) we must cross the bridge (WX) in
order to visit every vertex on the right-hand-side, but to get back to our starting vertex
we must cross the bridge again thereby visiting the vertices X and # for a second time.
Therefore G does not have a Hamiltonian cycle.

Note: No graph with a bridge has a Hamiltonian cycle.

().  Thegraphisnot Eulerian asit contains vertices of odd degree, i.e. vertices P,
S, Tand V al have degree 3.

(i1).  ThegraphisHamiltonian and a Hamiltonian cycleis, PTUVSRQP.

For example, the graph below has every vertex of n degree 2 but it is not Eulerian as
it is not connected.
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S13. (i). Eulerian: Yesasall vertices have even degree. Euler circuit: PSROSTUPTQP.

(it).  Hamiltonian: Yes. Hamiltonian cycle: PORSTUP.

P

S14. Thegraph K77 is 76-regular and so all vertices therefore have even degree, i.e. al
vertices have degree 76. Hence, K7; is Eulerian.

The graph K3, is 31-regular and so all vertices therefore have odd degreg, i.e. al
vertices have degree 31. Hence, K3, isnot Eulerian.

12 3 4 a b c d e [ g

1/0 1 0 2 1/1 0 0100 1

S15 (i). 2/1021 (ii). 201100110
"3/0 201 30110010

402 110 40 011101

S16. ().  Number of edgesin G is, | E(G)| = 1 D deg (X) = % x 20 = 10.

XeV(G)

( The degree sum (20) is obtained by adding the entries in the adjacency matrix ).

(i)  For the number of paths of length 2 joining Vertices 1 and 4 we must calculate
the matrix 4°.
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S17.

S18.

S19.

S20.

S21.

12 3 4

21132113 1(15 7 7 8

42 102111021 207 6 25
1 2011 201 3| 7 2 6 5
3110){3110 418 5 5 11

Defining Row 1 to correspond to Vertex 1 and Column 4 to correspond to Vertex 4,
the matrix shows that there are 8 paths of length 2 joining Vertices 1 and 4.

As T isatree by definition, T'is cycle-free and has n — 1 edges.
As |V |=5000then| E |=5000-1=4999. So T has 4999 edges.

If m=21and/orn=1then K, isatree.

(). If » and s are both even the complete bipartite graph, K, ; will have an Euler
circuit as each vertex will have even degree.

(@if).  The complete bipartite graph, K

r,s!

has r + s verticesand r x s edges.

By the Handshaking Lemmait is not possible to construct a graph on 7 vertices where

each vertex has degree 5 as the sum of the degrees of the verticeswill be, 7 x 5 = 35

which is an odd number.

By the Handshaking Lemma the degree sum is twice the number of edges. Hence, since
degreesumis 12 x 7 = 84 we havethat 2| £ | = 84 and so the number of edgesis 42.
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().

123 4
2 1(0 1 0 1
(ii). 200 011

4 A=
3]0 101
401 000

(iif).  The table shows the in-degrees and out-degrees of each vertex.

1|1 2|3 ]| 4 Total
In-degree 1 2 1] 3 7
Out-degree 2 2 2 1 7

(iv). TheHandshaking (Di)Lemma states that in any digraph the sum of the
in-degrees is equal to the sum of the out-degrees and both are equal to the
number of arcs. Thisis because every arc counts exactly once to the out-
degreetotal and exactly once to the in-degree total.

For the digraph D: the sum of the in-degrees (7), equals the sum of the out-
degrees (7) and both equal the number of arcs (7). Hence, the Handshaking
(Di)Lemmaholdsfor D. .

(v). AdigraphisEulerian if and only if it is connected and the in-degree of each
vertex equalsits out-degree. ( Equivalently, adigraphisEulerianifitis
connected and there exists aclosed trail (circuit) which uses each arc exactly
once. )

(vi). No, Disnot Eulerian. Thetablein part (iii) shows there are vertices where
the in-degree of the vertex does not equal its out-degree. We can also obtain
this result from inspection of the graph or the adjacency matrix.



(vii). Theentry at position (1, 2) in 4° below indicates that there are exactly two
paths of length 3 from Vertex 1 to Vertex 2, i.e. 1412 and 1232.

123 4
1120 2
o212
3120 2
41011

S23. (i). Label the rows and columns of the matrix as shown:

P ORST
P(0O OO 10
0|1 0001
R|{0O 101 1|
S|01 100
7T{1 0100

The sum of the entriesin row ;j corresponds to the out-degree of vertex ;.
The sum of the entriesin columnj corresponds to the in-degree of vertex ;.

P Q R S T
Out-degree 1 2
In-degree 2 2 2 2 2

(i).  No, Disnot Eulerian as the in-degree does not equal the out-degree for
each vertex.

(ii1).  Thegraph D contains 10 arcs (edges) as each 1 in the adjacency matrix
corresponds to an arc.
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12 3 4
10 1 0 1
S24.(i). Adjacency matrix: ~2/0 011
30101
401 0 0 0
1 o 12345
3 >0 10100 1
. / 210 0010
S25. (i).
A=310001
5\ 400 0000
v 501 010
o

(i) No, D isnot Eulerian as the in-degree does not equal the out-degree for each

vertex. We can determine this either from inspection of D or from the adjacency
matrix.

S26. (i). The number of verticesin C, egquals the number of edges, and every vertex has

degree 2.

(if).  Thecyclegraphs C, and C, are shown below.
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S27. (i). An adjacency matrix is:

O Fr W OoON O -
O O FRr P ONNDN
O O FRL NPk O W
O r O Fr Fkr w +
O O Fr O O L, U
O OO o oo o

O O b~ W NP

(i).  Therow sum for row j corresponds to the degree of vertex ;.

(iii).  Vertex 3 has degree 4 as the loop contributes 2 to the degree.

S28. (i) The complete graph Ks is shown below:
P

(i).  Anadjacency matrix for Ks is:

P QORST
P(O1 111
ol1 0111

A=R/1 101 1|
S/1 1101
T'1 1110

(@iii).  Anadjacency matrix for K, will have 0’'s on the leading diagonal and 1's
elsewhere.

(iv). Thesum of the entriesin row j corresponds to the degree of vertex ;.
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(V).

(vi).

$29.  (i).

(ii).

N
I
a b WO NP

The complete graph K, has n vertices and so an adjacency matrix will be an

(n x n) matrix. Each row of the adjacency matrix will contain n — 1, 1's,

givingatotal of n(n — 1), 1's.

If the n(n — 1), 1'sare summed this gives the degree sum of al the vertices

which, by the Handshaking Lemma, is even and twice the number of edges.

Thedigraphis:

P P P OONDN
O Fr P P O W

1
1
0
0
1
1

O r rr r r &
R O O R+ O
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12 3 45
1/0 1 011
. 211 0101
S30.  (i).
A=3/01 011
41 0 1 0 1
511110
2 2
1
1
3 (- 3
Undirected Directed
Undirected Graph
Vertex Degree
1 3
2 3
3 3
4 3
5 4
Directed Graph
Vertex Indegree Outdegree
1 3 3
2 3 3
3 3 3
4 3 3
5 4 4
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(iii).

S31.

S32.

Undirected

No, the graph is not Eulerian as it contains vertices of odd degree.

Y es, the graph is Hamiltonian asit is possible to start at a vertex, visit each vertex
exactly once and return to the starting vertex. Hamiltonian cycle: PORSTP.

Directed

Y es, the graph is Eulerian as the in-degree equal s the out-degree at each vertex.
Can you find an Euler circuit?

Y es, the graph is Hamiltonian asit is possible to start at a vertex, visit each vertex
exactly once, and return to the starting vertex. Hamiltonian cycle: PORSTP.

The adjacency matrix has dimension, 5 x 5 so that the graph will have 5 vertices.

The rows of the adjacency matrix show that each vertex has degree 3. Hence, the sum

of the degreeswill be 5 x 3 = 15, i.e. an odd nhumber. However, thisisimpossible as

the Handshaking Lemma states that if the degrees of all the verticesin agraph are
summed the result must be an even number.

The graphs are isomorphic under the correspondence shown:

V4 A 4 4

g
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The adjacency list is the same for both graphs:

S33.

a b, o
p o €
Y B o 0
9 y 0
0 &7 ¢
€ 5, 6,p
o a, &

The chromatic number of acyclegraph, C,,is2if nisevenand 3if »n isodd.
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