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INTRODUCTION TO GRAPH THEORY 

 

1. Introduction  

In recent years graph theory has become established as an important area of mathematics  

and computer science.  The origins of graph theory however can be traced back to Swiss  

mathematician Leonhard Euler and his work on the Königsberg bridges problem (1735),  

shown schematically in Figure 1.  

 

 

 

Figure 1: Bridges of Königsberg 

 

Königsberg was a city in 18th century Germany (it is now called Kaliningrad and is in  

western Russia) through which the river Pregel flowed.  The city was built on both banks of the  

river and on two large islands in the middle of the river.  Seven bridges were constructed so that  

the city’s inhabitants could travel between the four parts of the city; labelled P, Q, R and S in  

the diagram.  The people wondered whether or not it was possible for someone to walk around  

the city in such a way that each bridge was crossed exactly once with the person ending up at  

their starting point.  All attempts to do so ended in failure.  In 1735 however Euler presented a  

solution to the problem by showing that it was impossible to perform such a journey.  Euler  

reasoned that anyone standing on a land mass would need a way to get on and off.  Therefore  

each land mass would require an even number of bridges.  In Königsberg each land mass had an  

odd number of bridges explaining why all seven bridges could not be crossed without crossing  

one more than once.  In formulating his solution Euler simplified the bridge problem by  

representing each land mass as a point and each bridge as a line as shown in Figure 2, leading to  
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the introduction of graph theory and the concept of an Eulerian graph.  A closely related  

problem showed that if the journey started at one land mass and ended at another, crossing each  

bridge exactly once, then only those two land masses could have an odd number of bridges. 

 

Two other well-known problems from graph theory are: 

 

• Graph Colouring Problem: How many colours do we need to colour a map so that  

every pair of countries with a shared border have different colours?  

 

• Travelling Salesman Problem: Given a map of several cities and the roads  

between them, is it possible for a travelling salesman to visit (pass through) each of  

the cities exactly once?  

 

Some of the applications of graph theory include:  

• communication network design  

• planning airline flight routes  

• using GPS to find the shortest path between two points  

• design of electrical circuits  

• modelling of the Worldwide Web. 

 

 

2. Definitions 

The Königsberg bridge problem can be represented diagramatically by means of a set of  

points and lines.  The points P, Q, R and S are called vertices, the lines are called edges  

and the whole diagram is called a graph. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Graphical representation of the Königsberg bridge problem 

P 

Q 

R 

S 
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2.1. Vertices and Edges  

A graph, G, is a mathematical structure which consists of: 

 

(i).  a vertex set )(GVV =  whose elements are called vertices of G. 

 

(ii).  an edge set )(GEE =  of unordered pairs of distinct vertices called edges of G.  

Note that E is actually a multiset in that some unordered pairs can be repeated to  

represent more than one edge joining two vertices.  

 

(iii).  a relation that associates with each edge two vertices, which are not necessarily  

distinct, called its endpoints. 

 

Such a graph is denoted })(,)({ GEGVG = , or just simply },{ EVG = .   

 
 
Example 1 

Consider the graph G shown in the diagram below. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Graph with four vertices and five edges 
 
 
The set V consists of the four vertices, 1, 2, 3 and 4, i.e. }4,3,2,1{)( =GV .   

 

The set E consists of the five edges, }4,3{},4,2{},4,1{},2,1{ ==== gfed   

and }3,2{=h , i.e. },,,,{)( hgfedGE = . 

 

Hence, }},,,,{,}4,3,2,1{{})(,)({ hgfedGEGVG ==  

Each edge is associated with two vertices called its endpoints.  

2 
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4 
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For example, in Figure 3, vertices 1 and 2 are the endpoints of d and d is said to 

connect vertices 1 and 2.  

 

An edge-endpoint function on a graph G defines a correspondence between edges and  

their endpoints.   

 

 

Example 2 

The edge-endpoint function for the graph in Figure 3 is given in the following table:  

 

Edge Endpoints 

d { 1,  2 } 

e { 1,  4 } 

f { 2,  4 } 

g { 3,  4 } 

h { 2,  3 } 

 

An undirected graph is a graph in which the edges have no orientation.  Hence, in an  

undirected graph the edge set is composed of unordered vertex pairs.  In Figure 3 for  

example, the edge }2,1{  is considered identical to the edge }1,2{ .   

 

If X and Y are vertices of a graph, G, then X and Y are said to be adjacent if they are joined  

by an edge.   

 

An edge in a graph that joins two vertices is said to be incident to both vertices. 

 

Example 3 

Referring to Figure 3, and the edge-endpoint table, we have the following adjacent vertices: 

 

• vertices 1 and 2 are adjacent  

• vertices 1 and 4 are adjacent  

• vertices 2 and 3 are adjacent.  

• vertices 2 and 4 are adjacent  

• vertices 3 and 4 are adjacent  
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The edges that are incident with pairs of vertices as follows: 

 

• edge d is incident to vertices 1 and 2  

• edge e is incident to vertices 1 and 4.   

• edge f  is incident to vertices 2 and 4 

• edge g is incident to vertices 3 and 4 

• edge h is incident to vertices 2 and 3.   

 

 

Two edges connecting the same vertices are called multiple or parallel edges.   

In Figure 4 edges f  and g are parallel edges.   

 

 

 

 

 

 

 

 

 

Figure 4: Graph containing parallel edges 

 

Graphs like the one shown here, containing parallel edges, are called multigraphs and we shall  

look at these in more detail later in the unit.  

 

 

The order of a graph, G, denoted |)(| GV , is the number of vertices contained in G. 

In Figure 3, 4|)(| =GV . 

 

 

The size of a graph, G, denoted |)(| GE , is the number of edges contained in G. 

In Figure 3, 5|)(| =GE . 

f 

h 
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The degree of a vertex X, written )(deg X , is the number of edges in G that are incident with X.   

 

In Figure 3, 2)1(deg = , 3)2(deg = , 2)3(deg =  and 3)4(deg = . 

 

Any vertex of degree zero is called an isolated vertex and a vertex of degree one is an  

end-vertex. 

 

 

Example 4  

In the graph below vertex 5 is an isolated vertex and vertex 3 is an end-vertex.   

 

 

 

 

 

 

 

 

 

Figure 5: Graph containing an isolated vertex  
 

 

A vertex is said to be even or odd according to whether its degree is an even or odd number.   

In Figure 3 vertices 2 and 4 are odd while vertices 1 and 3 are even.  

 

If the degrees of all the vertices in a graph, G, are summed then the result is an even number.   

Furthermore, this value is twice the number of edges, as each edge contributes 2 to the total  

degree sum.  We have the following lemma: 

 

2 

1

3 

4 

d 

f 

g 

e 

5 



7 
 

2.1.1. The Handshaking Lemma  

In any undirected graph the sum of the vertex degrees is equal to twice the number of edges, i.e.  

 

( )
)(2)(deg GEX

GVX

=
∈

 

 

Proof: In a graph G an arbitrary edge },{ YX  contributes 1 to )(deg X  and 1 to  

)(deg Y .  Hence the degree sum for the graph is even and twice the number of edges. 

 

Note: A corollary of the Handshaking Lemma states that the number of odd vertices in a  

graph must be even.  So, for example, we cannot have a graph with 5 even vertices and 5  

odd vertices as the degree sum would be an odd number, contradicting the Handshaking  

Lemma.  

 

 

The degree sequence of an undirected graph G is a bracketed list of the degrees of all the  

vertices written in ascending order with repetition as necessary.  

 

Example 5  

The degree sequence of the graph in the diagram below is ( 1, 2, 2, 3, 4 ).   

 

 

 

 

 

 

 

 

 

Note that some texts define the degree sequence of a graph as the degrees of the vertices  

written in descending order with repetition as necessary.  In the above case we would have  

( 4, 3, 2, 2, 1 ).   

 

E 

A

C 

B 

D 
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2.2. Connected Graphs  

A graph is said to be connected if it cannot be expressed as the union of two graphs.  If a  

graph is not connected it is said to be disconnected.  The graph on the left is connected as  

it is “in one piece” while the graph on the right is disconnected as it contains two distinct  

components.  See Section 4 for an alternative definition of connected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1. Cut-Points and Bridges 

A vertex is a cut-vertex, if removal of that vertex (and the edges through it) disconnects the  

graph.  A cut-vertex is also called a cut-point or an articulation point.   

 

Example 6  

In the graph on the left vertex 2 is a cut-vertex as its removal disconnects the graph.  The  

resulting graph, on the right, has two connected components.  Vertex 6 is also a cut-vertex.  

 

 

 

 

 

 

An edge is a bridge (or isthmus) if removal of that edge disconnects the graph.  

 
Here edge }6,2{ is a bridge as its removal disconnects the graph. 
 

1 2 

3 4 

5 7

6

8 

1

34

5 7 

6 
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3.Graph Structures 

In this section we briefly look at different types of graphs. 

 

3.1. Regular Graphs 

A graph G is regular if all vertices of G have the same degree.  A regular graph where all  

vertices have degree k is referred to as a k-regular graph.   

 

Example 7  

0-regular:  

 

 

1-regular: 

 

 

2-regular: 

 

 

The graph on the left is called a 2-regular graph on 3 vertices and the one on the right is  

a 2-regular graph on 4 vertices.  Exercise: Sketch a 2-regular graph on 5 vertices.   

 

Notes 

(i).  The Handshaking Lemma tells us that the total degree of any graph is an even number,  

i.e. twice the number of edges.  Hence, it is impossible to construct a k-regular graph,  

where k is odd, on an odd number of vertices.  For example, we cannot have a  

3-regular graph on 5 vertices as this would give a degree sum of 15, violating the  

Handshaking Lemma.   

 

(ii).  A 0-regular graph is called an empty graph.   

 

(iii).  Cycle graphs (see Section 3.3) are 2-regular graphs.  

 

(iv).  3-regular graphs are called a cubic graphs.   

There is only one 3-regular graph on 4 vertices.  Can you sketch it?  

There are two 3-regular graphs on 6 vertices.  Can you sketch them?  

There is no 3-regular graphs on 7 vertices.  Why?  
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3.2. Complete Graphs 

A complete graph, denoted nK , is a graph with n vertices all of which are adjacent to  

each other.   

 

 
K1  
 
 
K2  
 
 
 
 
K3  
 
 
 
 
 
 
K4  
 
 
 
 
 
 
 
K5  
 
 
 
 
 
 
 
The complete graph nK  is regular and each of the n vertices has degree 1−n .  Hence,  

the sum of the degrees is )1( −nn  and by the Handshaking Lemma the number of edges in  

nK  is, 
2

)1( −nn
  

 
Exercise: Check that the two properties stated above hold for the complete graphs shown.   
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3.3. Cycle Graph  

A cycle on a graph starts at any vertex, travelling through the graph without repeating  

vertices or edges before ending on the start vertex.  In Example 5, BAEB and AEDBA are both  

cycles while AEDBEA is not a cycle as the vertex E is repeated.  

 

A cycle graph, denoted Cn, is a graph on n vertices, },...,,{ 110 −nvvv , with n edges  

},{,...,},{},,{ 012110 vvvvvv n − .  Note that Cn contains a single cycle through all the  

vertices.   

 

C1  
 
 
 
C2  
 
 
 
C3  
 
 
 
 
C4  
 
 
 
 
 
 
C5  
 
 
 
 
Notes 

(i).  In a cycle graph every vertex has degree 2.   

(ii).  The graph C1 contains a self-loop and we shall see later that a loop contributes two to  

 the degree of the vertex.  Hence, the vertex in C1 has degree 2 ensuring that the  

Handshaking Lemma holds.   

(iii).  The graph C2 contains parallel edges.  

 

A graph that contains no loops or parallel edges is called a simple graph.
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3.4. Bipartite Graphs 

A bipartite graph, ),( 21 VVG  is a graph whose vertices can be partitioned into two disjoint  

subsets V1 and V2, where no edge joins vertices that are in the same subset.  A vertex in one of  

the subsets may be joined to all, some, or none of the vertices in the other subset – see the  

diagrams below.  In the case where every vertex of V1 is joined to every vertex of V2 then G is  

called a complete bipartite graph and is usually denoted srK , .  Here r and s represent the  

number of vertices in V1 and V2 respectively.  A bipartite graph is usually shown with the two  

subsets as top and bottom rows of vertices or with the two subsets as left and right columns of  

vertices. 

 

 
 

 
 
 
 
 
 
 
 
 
 
The graph on the right is the complete bipartite graph, 5,2K  with 752 =+  vertices and  

1052 =×  edges.  In general, a complete bipartite graph srK ,  has sr +  vertices and  

sr ×  edges. 

 

 

A bipartite graph srK ,  is regular if and only if sr = .  The complete bipartite graph 3,3K  

shown below is regular as each vertex has degree 3. 

 

 

 

 

 

 

1V  

2V  

1V  

2V  
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A complete bipartite graph of the form sK ,1  is called a star graph and 4,1K is shown below. 

 

 

 

 

 

 

 

 

Example 8  

The graph on the left can be drawn as a 3-regular bipartite graph by partitioning the vertices into  

the two sets },,,{1 WURPV = , shown in red, and },,,{2 VTSQV = , shown in  

black.  Although they look different they are in fact the same graph. 

 

 

 

 

 

 

 

Notes  

(i).  Two graphs with the same number of vertices and the same number of edges,  

with the edges connected in the same way are said to be isomorphic.   

 

(ii).  If two graphs have different degree sequences the graphs are not isomorphic.  

P Q 

R S 

T U 

V W 

P R U W 

Q S T V 
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3.5. Tree Graphs:  

A forest is a graph containing no cycles and a connected forest is called a tree.  Note that a  

graph on n vertices has fewest edges when it is a tree (as it has no cycles) and most edges when  

it is a complete graph.  Below is a forest with four components. 

 
 
 
 
 
 
 
 
 
 
If the four components in the above forest are connected we obtain the tree below. 
 
 
 
 
 
 
 
 
 
 
 

Theorem 

Let T be a graph with 1>n  vertices.  The following statements are equivalent: 

• T is a tree. 

• T is cycle-free and has n – 1 edges. 

• T is connected and has n – 1 edges. 

• T is connected and contains no cycles.  

• T is connected and each edge is a bridge.  

• Any two vertices of T are connected by exactly one path.  

• T contains no cycles, but the addition of any new edge creates exactly one cycle.  

 

 

Note: From the above theorem it must be the case that a finite tree with n vertices must have  

1−n  edges.  
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3.6. Multigraphs 

The diagram shows the graph 

 

G = { V, E } = { { A, B, C, D }, {{A, B}, {B, C}, {B, D}, {C, D}, {C, D}, {D, D}} }.   

 

 

 

 

 

 

 

 

 

This is an example of a multigraph.  A multigraph is a graph that allows the existence of  

loops and parallel (multiple) edges.  Note that not all texts allow multigraphs to have loops  

and in the case when graphs include loops they are called pseudographs.  We shall refer to  

a graph with parallel edges and/or loops as a multigraph.  

 

A loop is an edge that links a vertex to itself.  In the figure the edge (D, D) is a loop and  

connects vertex D to itself.   

 

If two vertices are joined by more than one edge then these edges are called parallel edges.  In  

the figure the edges (C, D) represent parallel edges.  

 

 

Notes  

(i). We define a loop to contribute 2 to the degree of a vertex so that the Handshaking Lemma  

holds for multigraphs.  In the above figure vertex D therefore has degree 5.  The degree sum of  

the graph is 1 + 3 + 3 + 5 = 12 which is twice the number of edges (6) as required by the  

Handshaking Lemma. 

 

(ii). Some texts do not allow multigraphs to have loops. 

A

C 

D

B 
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4. Walks, Trails & Paths  

A walk of length k on a graph G is an alternating sequence of vertices ( iv  ) and edges ( ie  ): 

 

kk veevevev ,...,,,,,, 322110  

 

where iv  and 1+iv  are both incident to 1+ie .  Note that the graph has k + 1 vertices and k edges. 

 

The length of a walk is the number of edges in the walk. 

 

For convenience, and ease of reading, we omit edges and use only vertices so that the walk  

given above is written as kk vvvvv ,...,,, 1210 − .   

 

Example 9  

(i).  A walk on the graph below is given by: 1, 5, 4, 3, 7, 1, 6 and has length, L = 6. 

 

 

 

 

 

 

 

 

Note: A walk can repeat both edges and vertices.  

 

 

(ii).  A walk is said to be closed if its first and last vertices are the same, i.e. kvv =0 .   

 

A closed walk, of length 8, on the graph is given by:  1, 5, 4, 3, 7, 1, 6, 5, 1. 

 

 

(iii).  A trail is a walk where all edges are distinct but vertices may be repeated. 

 

A trail on the graph is given by:  1, 5, 4, 3, 7, 1, 6, 5. 

3

1 

2 

4

5

6 

7 
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(iv).  A closed trail is called a circuit.   

 

A circuit on the graph is given by: 1, 2, 3, 1, 5, 4, 3, 7, 1.  Note that no edges are  

repeated but we are allowed to repeat vertices. 

 

(v).  A path is a trail in which all vertices are distinct.  Hence, in a path neither vertices nor  

 edges are repeated. 

 

A path on the graph is given by:  1, 5, 4, 3, 7. 

 

 

(vi).  A closed path is called a cycle.  

 

A cycle on the graph is given by:  1, 2, 3, 4, 5, 1.  Note that no vertices or edges are  

repeated.  

 

 

Therefore, all paths are trails and all trails are walks.   

 

In terms of set theory, Paths Œ Trails Œ Walks as shown below. 

 

 

 

 

 

 

 

 

 

The information given above can be summarised in the following table:  

PATH

TRAIL

WALK
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Repeated Vertex 

( Vertices ) 

Repeated 

Edge(s) 

Open Closed Name 

Yes Yes Yes  Open Walk  

Yes Yes  Yes Closed Walk  

Yes No Yes  Trail  

Yes No  Yes Circuit (Closed Trail) 

No No Yes  Path  

No No  Yes Cycle  (Closed Path) 

 

Adapted from, “Discrete and Combinatorial Mathematics” by R. P. Grimaldi. 

 

 

Now that we have defined the term path we can provide an alternative definition, to that given  

in Section 2.2, for a graph to be connected. 

 

A graph is connected if given any two vertices iv  and jv  there is a path from iv  to jv .   

 

Returning to the example in Section 2.2, reproduced below for completeness, there is clearly a  

path between all the vertices in the graph on the left and so it is connected.  However, in the  

graph on the right we are unable to, for example, find a path from vertex S to vertex P and so  

the graph is disconnected.  
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5. Eulerian and Hamiltonian Graphs  

This section considers special ways of traversing graphs.  Examples of graph traversal  

problems are the Königsberg bridges and Travelling Salesman problems.  

 

 

5.1. Eulerian Graphs  

Definition: An Euler circuit on a graph, G, is a circuit (closed trail) that uses every edge of G  

exactly once.  Note that we are allowed to use the same vertex multiple times, but we can only  

use each edge once.  A graph is Eulerian if it has an Euler circuit. 

 

Definition: An Euler trail through a graph, G is an open trail that passes exactly once through  

each edge of G.  We say that G is semi-Eulerian if it has an Euler trail.  Note that every  

Eulerian graph is semi-Eulerian. 

 

 

Theorem: Let G be a connected graph.  Then G is Eulerian if and only if every vertex of G has  

even degree.   

 

 

Corollary: A connected graph is semi-Eulerian if and only if there are 0 or 2 vertices of odd  

degree.  Note that if a semi-Eulerian graph has two vertices of odd degree then any Euler trail  

must have one of them as its initial vertex and the other as its final vertex.  
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Example 10  

 

(i).  

 

 

 

 

 

(ii).  

 

 

 

 

 

 

(iii). 

 

 

 

 

 

The table below provides simple rules that count the number of odd degree vertices in a graph  

to decide whether or not it has an Euler circuit or Euler trail. 

 

 

No. of Odd Vertices For a Connected Graph 

0 There is at least one Euler circuit. 

1 Not possible 

2 No Euler circuit but at least 1 Euler trail. 

More than 2 No Euler circuits or Euler trails. 

 

 

The following algorithm is optional but it provides a relatively simple method for finding an  

Euler circuit when one exists.  

1 2 

3 4 

5 

1 2 

3 

4 5 

6

1 2 

3 4 

5 

SEMI-EULERIAN 

By the above corollary as there are two vertices 
(1 and 5) of odd degree (i.e. degree 3) the graph 
is semi-Eulerian.   

Euler trail must start at one of the odd degree 
vertices and end at the other, e.g. 12342645615.  

NON-EULERIAN 

As there are four vertices of odd degree the 
graph is non-Eulerian. 

EULERIAN 

All vertices have even degree and so, by the 
above theorem, the graph is Eulerian. 

Euler circuit: 1253451 
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Fleury’s Algorithm  

If G is an Eulerian graph then using the following procedure, known as Fleury’s  

Algorithm, it is always possible to construct an Euler circuit of G.   

 

Starting at any vertex of G traverse the edges of G in an arbitrary manner according to the  

following rules: 

 

 (i).  Erase edges as they are traversed and if any isolated vertices appear erase them. 

 

(ii). At each step use a bridge only if there is no alternative. 

 

Note: Since every vertex in the Königsberg graph in Figure 2 has an odd degree it is not  

possible to find an Euler circuit of this graph.  It is therefore impossible for someone to walk  

around the city in such a way that each bridge is crossed exactly once and they end up at their  

starting point. 

 

 

5.2. Hamiltonian Graphs  

Definition: A Hamiltonian cycle on a graph, G, is a cycle (closed path) that uses every vertex  

of G exactly once.  Note that we do not need to use all the edges.  A graph is Hamiltonian if it  

has a Hamiltonian cycle.  

 

Note that some texts call a Hamiltonian cycle a Hamiltonian circuit, i.e. a circuit which passes  

exactly once through each vertex of a graph.  This definition is identical to the one above  

because a circuit which does not repeat vertices, apart from the starting vertex, is a cycle.  

 

Definition: A trail that passes exactly once through each vertex of G and is not closed is called  

a Hamiltonian trail.  We say that G is semi-Hamiltonian.  Note that every Hamiltonian graph  

is semi-Hamiltonian. 

 

While we have a theorem that provides necessary and sufficient conditions for a connected  

graph to be Eulerian (i.e. ‘G is Eulerian if and only if every vertex of G has even degree’)  

there is no similar characterisation for Hamiltonian graphs – this is one of the unsolved  

problems in graph theory.  In general, it is much harder to find a Hamiltonian cycle than it  

is to find an Eulerian circuit.  
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Example 11  

 

(i).     NON-HAMILTONIAN 

     

 

 

 

 

 

(ii).  

     SEMI-HAMILTONIAN 

     Hamiltonian trail: 2143 

 

 

 

 

(iii).  

     HAMILTONIAN 

     Hamiltonian cycle: 12341 

     Note that we do not need to use all edges. 

 

 

 

Notes 

(i).  The Travelling Salesman problem (TSP) searches for the most efficient (least total  

distance) Hamiltonian cycle a salesman can take so that each of n cities is visited.   

To date, no solution to the TSP has been found.   

 

(ii).   An Eulerian circuit traverses every edge in a graph exactly once, and may repeat  

vertices.  A Hamiltonian cycle, on the other hand, visits each vertex in a graph  

exactly once but does not need to use every edge.  

1 

2 

3 4 

1 2 

3 4 

1 2 

3 4 
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6. Digraphs (Directed Graphs)  

The graphs that we have met up to now have all been undirected graphs in the sense that the  

edges have no orientation.  In this section we extend the notion of a graph to include graphs in  

which “edges have a direction”.  These kind of graphs are known as directed graphs, or  

digraphs for short.  As shown in the diagram below the direction of an edge is defined so that  

movement between two vertices is only possible in the specified direction.  The terminology for  

digraphs is essentially the same as for undirected graphs except that it is commonplace to use  

the term arc instead of edge.  Digraphs can be used to model real-life situations such as flow in  

pipes, traffic on roads, route maps for airlines and hyperlinks connecting web-pages.  We  

have actually encountered the concept of a digraph before in an earlier  unit when we looked at  

relations on sets.  In Section 3.3 of that unit, which was optional, we described how a  

relation R could be represented diagrammatically by a digraph as an alternative to using an  

arrow diagram or a matrix.   

 

 

Example 12 

The figure below shows a digraph on four vertices with six arcs.   

 

 

 

 

 

 

 

 

Considering the arc labelled x, we say that x goes from A to D with A being the initial vertex  

and D the terminal vertex of x.   

 

6.1. In-degree and Out-degree  

• The in-degree of a vertex is the number of arcs that terminate at that vertex.   

For example, the in-degree of vertex C in Example 12 is 2.  

 

• The out-degree of a vertex is the number of arcs that originate at that vertex. 

For example, the out-degree of vertex B in Example 12 is 3.  

A

C

B

D 

u

v
w

x
y 

z
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6.1.1. The Handshaking (Di)Lemma  

In any digraph the sum of the out-degrees, equals the sum of the in-degrees, equals the  

number of arcs.  

 

Proof:  Every arc contributes exactly once to the out-degree total and exactly once to the in- 

degree total.  

 

 

The in-degree sequence of a digraph is a bracketed list of the in-degrees of all the vertices in  

ascending order with repetition as necessary.  

 

The out-degree sequence of a digraph is a bracketed list of the out-degrees of all the vertices  

in ascending order with repetition as necessary.  

 

 

Example 13  

Consider the following digraph. 

 

 

 

 

 

 

 

 

 

(i).  Determine the in-degree and out-degree of the vertices and show that the Handshaking  

 (Di)Lemma holds.  

 

(ii).  Write down the in-degree and out-degree sequences.  

 

A 

C 

B 

D 
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Solution 

(i).  Create a table of in-degrees and out-degrees. 

 

 A B C D Total  

Out-degree 3 3 2 0 8 

In-degree 1 2 2 3 8 

 

The sum of the out-degrees (8) equals the sum of the in-degrees (8) and these values  

both equal the number of edges (8).  The Handshaking (Di)Lemma therefore holds.  

 

 

(ii).  From the table in part (i), the in-degree sequence is,{ 1, 2, 2, 3 } and the out-degree  

sequence is,{ 0, 2, 3, 3 }.  

 

 

 

6.2. Underlying Graph 

The underlying graph of a digraph is the undirected graph obtained when the arrows are  

removed from the digraph.   

 

 

Example 14 

The graph underlying the digraph in Example 12 is the undirected graph shown below.   

Note that arcs have been replaced by edges.  

 

 

 

 

 

 

 

A

C

B

D 
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6.3. Walks, Trails and Paths on Digraphs  

The concept of walks, trails and paths carries over from undirected graphs to digraphs – see  

Section 4.  However, we must remember that on a digraph we can only move along an edge  

in a single direction, i.e. the direction in which the arrow is pointing.  

 

 

Example 15 

Find a walk, trail and path on the digraph shown below.  

 

 

 

 

 

 

 

 

 

Solution  

A walk is any route from one vertex to another along the edges of the graph.  A walk can  

repeat edges and vertices any number of times and can end on any vertex.   

One example of a walk is given by: 1, 5, 6, 1, 7, 3, 1, 5, 6.   

 

A trail is a walk where all edges are distinct but vertices may be repeated.  

One example of a trail is given by: 1, 5, 6, 1, 7, 3.  

 

A path is a trail in which all vertices are distinct.   

One example of a path is given by: 1, 5, 6.  

3 

1 

2 

4 

5 

6 

7 
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7. Adjacency Matrices  

Up to now we have only considered graphs where the number of edges and vertices is relatively  

small so that they can be easily be shown in diagram form.  However, as graphs become large it  

is no longer feasible to display them visually.  When storing a graph on a computer it is useful  

to represent it in matrix form, as the calculation of paths, trails and circuits, for example, can  

easily be performed.  In this section we look at adjacency matrices for both undirected and  

directed graphs.  

 

 

7.1. Adjacency Matrix of an Undirected Graph 

In Section 2 we defined an undirected graph to be a graph in which the edges have no  

orientation.  Hence, all edges are bidirectional.  For example, in the graph shown in  

Example 14 the edge },{ BA  is considered identical to the edge },{ AB .  We now look  

at how to generate adjacency matrices for undirected graphs.  

 

If G is a graph with n vertices its adjacency matrix, A is defined as the nn ×  matrix  

whose ij-th entry is the number of edges joining vertex i and vertex j.   

 

 

Example 16  

Determine an adjacency matrix for following graph. 

 

 

 

 

 

 

1

4 3 

2 
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Solution 

The graph has 4 vertices and so the adjacency matrix will have dimension, 44 × .   

The entries of the matrix are determined as follows:  

 

• 0 edges connect vertex 1 to vertex 1, so the entry in Row1/Column1 is a ‘0’.   

• 1 edge connects vertex 1 to vertex 2, so the entry in Row1/Column2 is a ‘1’.   

• 2 edges connect vertex 1 to vertex 3, so the entry in Row1/Column3 is a ‘2’.   

• 0 edges connect vertex 1 to vertex 4, so the entry in Row1/Column4 is a ‘0’.   


















=

....

....

....

0210

4

3

2

1

4321

A  

 

• 1 edge connects vertex 2 to vertex 1, so the entry in Row2/Column1 is a ‘1’.   

• 0 edges connect vertex 2 to vertex 2, so the entry in Row2/Column2 is a ‘0’.   

• 1 edge connects vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’.   

• 1 edge connects vertex 2 to vertex 4, so the entry in Row2/Column4 is a ‘1’.   


















=

....

....

1101

0210

4

3

2

1

4321

A  

 

• 2 edges connect vertex 3 to vertex 1, so the entry in Row3/Column1 is a ‘2’.   

• 1 edge connects vertex 3 to vertex 2, so the entry in Row3/Column2 is a ‘1’.   

• 0 edges connect vertex 3 to vertex 3, so the entry in Row3/Column3 is a ‘0’.   

• 0 edges connect vertex 3 to vertex 4, so the entry in Row3/Column4 is a ‘0’.   

 


















=

....

0012

1101

0210

4

3

2

1

4321

A  
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• 0 edges connect vertex 4 to vertex 1, so the entry in Row4/Column1 is a ‘0’.   

• 1 edge connects vertex 4 to vertex 2, so the entry in Row4/Column2 is a ‘1’.   

• 0 edges connect vertex 4 to vertex 3, so the entry in Row4/Column3 is a ‘0’.   

• 0 edges connect vertex 4 to vertex 4, so the entry in Row4/Column4 is a ‘0’.   

 


















=

0010

0012

1101

0210

4

3

2

1

4321

A .   

 

 This is the adjacency matrix for the graph.   

 

 

Notes  

(i).  A graph can be represented by several adjacency matrices as different labelling  

of the vertices produces different matrices.   

(ii).  In the matrix A, the entry jia  records the number of edges joining vertices i and j. 

(iii).  For an undirected simple graph: Sum of Row j = Sum of Column j = Degree of vertex j . 

(iv).  The adjacency matrix for an undirected graph is symmetric, i.e. TAA = .   

(v).  The entries on the main diagonal are all 0 unless the graph has loops.   

 

 

Example 17 

Given an adjacency matrix we can construct the associated graph, G.   

 

Determine the graph corresponding to the adjacency matrix below,  

 


















=

0111

1010

1122

1020

4

3

2

1

4321

A .  
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Solution 

The matrix has dimension 44 ×  and so the graph has 4 vertices.   

Note that a loop is defined to contribute 2 to the degree of a vertex.  This approach  

ensures that the Handshaking Lemma holds for multigraphs. 

 

We proceed as follows processing one row of the matrix A at a time:  

 

• Entry in Row1/Column1 is a ‘0’so 0 edges connect vertex 1 to vertex 1.  

• Entry in Row1/Column2 is a ‘2’so 2 edges connect vertex 1 to vertex 2.  

• Entry in Row1/Column3 is a ‘0’so 0 edges connect vertex 1 to vertex 3.  

• Entry in Row1/Column4 is a ‘1’so 1 edge connects vertex 1 to vertex 4.  

 

 

 

 

 

 

 

• Entry in Row2/Column1 is a ‘2’so 2 edges connect vertex 2 to vertex 1.  

• Entry in Row2/Column2 is a ‘2’so vertex 2 has a self-loop.   

• Entry in Row2/Column3 is a ‘1’so 1 edge connects vertex 2 to vertex 3.  

• Entry in Row2/Column4 is a ‘1’so 1 edge connects vertex 2 to vertex 4.  

 

 

 

 

 

 

1

4 3

2 

1 

4 3 

2 
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• Entry in Row3/Column1 is a ‘0’so 0 edges connect vertex 3 to vertex 1.  

• Entry in Row3/Column2 is a ‘1’so 1 edge connects vertex 3 to vertex 2. 

• Entry in Row3/Column3 is a ‘0’so 0 edges connect vertex 3 to vertex 3.  

• Entry in Row3/Column4 is a ‘1’so 1 edge connects vertex 3 to vertex 4.  

 

 

 

 

 

 

 

• Entry in Row4/Column1 is a ‘1’so 1 edge connects vertex 4 to vertex 1.  

• Entry in Row4/Column2 is a ‘1’so 1 edge connects vertex 4 to vertex 2.  

• Entry in Row4/Column3 is a ‘1’so 1 edge connects vertex 4 to vertex 3.  

• Entry in Row4/Column4 is a ‘0’so 0 edges connect vertex 4 to vertex 4.  

 

The graph corresponding to the adjacency matrix is therefore:  

 

 

 

 

 

 

 

 

 

7.2. Adjacency Matrix of a Digraph  

The adjacency matrix of a digraph having n vertices is a nn ×  matrix.  For each directed  

edge },{ ji vv , i.e. arrow from vertex iv  to vertex jv , we place a ‘1’ at the ith row, 

jth column position.  Otherwise we place a ‘0’ at the appropriate position in the matrix.  

1 

4 3 

2 

1 

4 3 

2 
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Example 18  

Determine an adjacency matrix for the digraph shown below,  

 

 

 

 

 

 

 

Solution 

• The digraph has 4 vertices and so the adjacency matrix will have dimension 44 × .  

 

• There is an arc from vertex 1 to vertex 2, so the entry in Row1/Column2 is a ‘1’   

• There is an arc from vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’   

• There is an arc from vertex 3 to vertex 2, so the entry in Row3/Column2 is a ‘1’   

• There is an arc from vertex 3 to vertex 4, so the entry in Row3/Column4 is a ‘1’   

• There is an arc from vertex 4 to vertex 1, so the entry in Row4/Column1 is a ‘1’   

 

• All other entries in the adjacency matrix will be zero 

 

From the calculations above an adjacency matrix for the digraph is therefore:  

 


















=

0001

1010

0100

0010

4

3

2

1

4321

A .  

 

Notes  

• The total number of 1’s in an adjacency matrix equals the number of arcs in the digraph.   

• In general, the adjacency matrix is not symmetric for a digraph.  

• The number of 1’s in row i of an adjacency matrix corresponds to the out-degree of  

vertex i.   

• The number of 1’s in column j of an adjacency matrix corresponds to the in-degree of  

vertex j.   

1 2

34
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7.3. Eulerian Digraphs  

A digraph is Eulerian if it is connected and the in-degree of each vertex equals its out-degree.  

 

Equivalently a digraph is Eulerian if it is connected and there exists a closed trail (circuit)  

which uses each arc exactly once.  Vertices however, can be repeated.  This definition is  

essentially the same as for undirected graphs, see Section 5.1, except that we can only traverse  

the graph in the direction of the arrows.  

 

 

Example 19 

Consider the following digraph, D.  
 
 
 
 
 
 
 
 
 
 

(i).  Determine an adjacency matrix for D.  

 

(ii).  Is D Eulerian?  Either state an Euler circuit or explain why the  

D is not Eulerian.  

 

Solution  

(i).  The digraph has 5 vertices and so the adjacency matrix will have dimension 55 × .  

 

• There is an arc from vertex 1 to vertex 2, so the entry in Row1/Column2 is a ‘1’   

• There is an arc from vertex 2 to vertex 3, so the entry in Row2/Column3 is a ‘1’   

• There is an arc from vertex 2 to vertex 4, , so the entry in Row2/Column4 is a ‘1’   

• There is an arc from vertex 3 to vertex 4, , so the entry in Row3/Column4 is a ‘1’   

• There is an arc from vertex 4 to vertex 2, , so the entry in Row4/Column2 is a ‘1’   

• There is an arc from vertex 4 to vertex 5, so the entry in Row4/Column5 is a ‘1’   

• There is an arc from vertex 5 to vertex 1, so the entry in Row5/Column1 is a ‘1’   

• All other entries in the adjacency matrix will be zero. 

1 2

3

45 
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The adjacency matrix is therefore,  
 























=

00001

10010

01000

01100

00010

5

4

3

2

1

54321

A .   

 

 

(ii).  Recall that the row sums of A give the out-degrees while the column sums provide the  

in-degrees of the vertices.  We construct the following table:  

 

Vertex Out-degree In-degree

1 1 1 

2 2 2 

3 1 1 

4 2 2 

5 1 1 

 

This digraph is Eulerian as the out-degree of each vertex is the same as its in-degree.   

 

An Euler circuit is given by: 1, 2, 3, 4, 2, 4, 5, 1.   

 

 

7.4. Hamiltonian Digraphs 

For a digraph to be Hamiltonian it must be connected and include a cycle (closed path) that 

uses every vertex of G exactly once.  Such a cycle is called a Hamiltonian cycle and need not  

use every arc of the graph.   

 

 

Example 20  

A Hamiltonian cycle for the digraph in Example 19 is, 1, 2, 3, 4, 5, 1.  We have been able to  

visit each vertex exactly once and return to the start vertex.  
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8. Adjacency Matrices & Paths  

Adjacency matrices can be used to determine the number of paths of different lengths  

between vertices.  

 

In an adjacency matrix the entry at position ),( ji  corresponds to the number of paths of  

length 1 between vertex iv and vertex jv .  It is also possible to construct matrices that provide  

information on paths of length other than 1 between vertices.   

 

For example, to calculate the matrix for paths of length 2 we must square the matrix A, i.e.  

calculate AAA ×=2 .   

 

In general, if we calculate k-th power of the adjacency matrix A the entry at position ),( ji  of  

the matrix kA  indicates the number of paths of length k between vertex iv and vertex jv .   

 

Example 21  

Let D be a digraph with 5 vertices as shown: 

 

 

 

 

 

 

An adjacency matrix is given by  

 























=

00010

00000

10000

01000

11010

5

4

3

2

1

54321

A .   

 

If a path of length 1 exists between two vertices (i.e. vertices are adjacent) then there is a 1 in  

the corresponding position in the adjacency matrix, A.  Here, for example, inspection of A  

reveals the following paths of length 1: 

1 2

3

45
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• from vertex 1 to vertices 2, 4 and 5 

• from vertex 2 to vertex 4 

• from vertex 3 to vertex 5 

• from vertex 5 to vertex 2. 

 

There are no paths of length 1 from vertex 4 to any of the other vertices.   

 

To calculate paths of length 2 the adjacency matrix,  A, is multiplied by itself to give 2A , i.e.  

 























=

01000

00000

00010

00000

01010

5

4

3

2

1

54321

2A .   

 

The matrix shows that there are only four paths of length 2 in the digraph:  

 

• from vertex 1 to vertex 2,  

• from vertex 1 to vertex 4,  

• from vertex 3 to vertex 2  

• from vertex 5 to vertex 4.  

 

In general, the matrix of path length k is generated by multiplying the matrix of path length  

1−k  by the matrix of path length 1, i.e. the adjacency matrix,  A. 

 

We say that a digraph is strongly connected if there is a path from every vertex to every other  

vertex.   

 

 

9. Weighted Graphs  

The edges in a graph can be weighted or unweighted.  In a weighted graph a non-negative real  

number is assigned to each edge, e, and is called the weight of e, denoted w(e).  These weights  

may correspond to the lengths of roads (edges) between towns (vertices) in a graphical  

representation of a map and we may be required to find the length of the shortest path from  
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town A to town L, say.  The problem is then to find the path from A to L with minimum weight.   

An example of a shortest path problem is the well-known Travelling Salesman Problem. 

 

 

Example 22  

The shortest path from A to L has length 17 and is shown in bold in the figure. 

 

 

 

 

 

 

 

 

 

 

 

( from Introduction to Graph Theory, Fourth Edition, Wilson R.J., 1996 ) 

 

 

9.1. Adjacency Matrix of an Undirected Weighted Graph 

The adjacency matrix is calculated in the same way as for the previous examples except that  

instead of placing a 1 in the ith row and jth column when vertices iv and jv  are adjacent we  

enter the weight.  

 

 

Example 26  

 

        























=

06007

60430

04020

03206

70060

A   

P 

S 

R 

Q 

T 

6 

4 
6 

2 

7 3 

A 

K F C I 

B D G J 

E 

H 
L 

2 

3 

2 3 5 

4 

9 

1 

9 2 2 

3 

5 
5 

1 6 
6 

2 9 
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10. Isomorphisms between Graphs 

Graphs G and H are said to be isomorphic (essentially the same graph) if there is a one-one  

and onto map, 

 

φ: V( G ) → V( H ) such that edge { A, B } ∈ E(G) ñ edge { φ( A ) φ( B ) } ∈ E( H ). 

 

In other words there is a one-one correspondence between the vertices of G and the vertices  

of H with the property that the number of edges joining any two vertices of G is equal to the  

number of edges joining the corresponding vertices of H. 

 

 

Example 27 

The graphs G1 and H1 below are isomorphic. 

 

 

 

 

 

 

 

 

 

In graph G1: vertex 1 has degree 4 and is joined to vertices 2, 3, 4 and 5. 

In graph G1: vertex 2 has degree 3 and is joined to vertices 1, 3, and 4. 

In graph G1: vertex 3 has degree 3 and is joined to vertices 1, 2, and 5. 

In graph G1: vertex 4 has degree 2 and is joined to vertices 1 and 2. 

In graph G1: vertex 5 has degree 2 and is joined to vertices 1 and 3. 

 

It is easily checked that this is the same for graph H1 and so the graphs are isomorphic. 

 

H1 

1 

2 3 

4 5

G1 

1 

2 5

3 

4 
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Hence, the adjacency list is the same for both graphs,  

 

Vertex Adjacent 
vertices 

1 2, 3, 4, 5 

2 1, 3, 4 

3 1, 2, 5 

4 1, 2 

5 1, 3 

 

 

Example 28 

The graphs G2 and H2 below are not isomorphic as they have different degree sequences. 

 

 

 

 

 

 

 

 

 

Both graphs have the same number of vertices, i.e. 7.  However, Graph G2 has degree sequence  

(2, 2, 2, 3, 3, 3,3) while Graph H2 has degree sequence (2, 2, 3, 3, 3, 3, 4).  Alternatively you  

could show that the two graphs have different adjacency lists.   

H2 G2 
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11. Vertex (Graph) Colouring 

The most well-known graph colouring problem is the Four Colour Problem which was first  

proposed in 1852 when Francis Guthrie noticed that four colours were sufficient to colour a  

map of the counties of England so that no two counties with a border in common had the same  

colour.  Guthrie conjectured that any map, no matter how complicated, could be coloured using  

at most four colours so that adjacent regions (regions sharing a common boundary segment, not  

just a point) are not the same colour.  Despite many attempts at a proof it took until 1976 when  

two American scientists, Appel and Haken, using graph theory produced a computer-based  

proof to what had become known as the Four Colour Theorem.   

 

In graph theory terms vertex (graph) colouring problems require the assignment of colours  

(usually represented by integers) to the vertices of the graph so that no two adjacent vertices  

are assigned the same colour (integer). 

 

Definition 

A k-colouring of a graph is a colouring in which only k colours (numbers) are used.  The  

chromatic number for a graph is the minimum number of colours (numbers) required to  

produce a vertex colouring of the graph.   The chromatic number of a graph G is denoted by  

( )Gχ .   

 

Example 29 

A graph with no edges has chromatic number 1 while the complete graph Kn has chromatic  

number n.  In the figures below we assign a ‘1’ to the graph with no edges on the left and say  

that it is 1-colourable while we assign the numbers 1, 2, 3, 4, 5 to the complete graph K5 on the  

right and say that it is 5-colourable.  We have that ( ) 55 =Kχ .   

 

 

 

 

 

 

 

1 

1 

2 

3 4 

5 
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Identifying the chromatic number in the two cases shown above is straightforward.  In general,  

however determining the exact chromatic number of a graph is a hard problem and no efficient  

method exists.  The only approach that would identify the chromatic number of a graph G with  

absolute certainty would involve investigating all possible colourings.  Clearly as graphs  

become larger this method becomes impractical, even using the most powerful computers that  

are available.  The best that can be done is to determine lower and upper bounds on the  

chromatic number and techniques such as looking for the largest complete subgraph in G (for a  

lower bound) and the Greedy algorithm (for an upper bound) enables us to do so.  The Greedy  

algorithm however is very inefficient but is adequate for ‘small’ graphs with the aid of a  

computer.   

 

 

Summary 

This unit has provided an introduction to the important topic of graph theory and you should  

now be able to:  

 

• identify different types of general graphs including: undirected and directed graphs;  

simple graphs and multigraphs.  

• understand basic terminology associated with graphs, including: connected, vertices,  

edges, arcs, adjacent, incident, degree sequence, in-degree, out-degree, etc.  

• identify different types of specific graphs: regular graphs, complete graphs, cycle  

graphs, bipartite graphs, tree graphs and weighted graphs.  

• state the Handshaking Lemmas for both undirected graphs and digraphs.  

• identify walks trails and paths on undirected graphs and digraphs. 

• determine whether or not a graph (undirected or digraph) is Eulerian and identify  

an Euler circuit if one exists.   

• determine whether or not a graph (undirected or digraph) is Hamiltonian and, for  

“small” graphs, identify a Hamiltonian cycle if one exists.  

• construct adjacency matrices for undirected graphs and digraphs.   

• construct an undirected graph or digraph given an adjacency matrix.  

• understand what is meant by isomorphic graphs.  

• understand what is meant by a graph colouring and the chromatic number of a graph.  
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INTRODUCTION TO GRAPH THEORY - TUTORIAL  

 

Q1.  (i).  Which of the following graphs are connected? 

 

 

 

(a).         (b).  

 

 

 

 

 

c).        (d). 

 

 

 

 

 

 

 

(ii).  If a graph is not connected state its connected components.  

 

(iii).  Which are simple graphs and which are multigraphs?  

 

 

 

Q2.  Sketch the following graphs:  

 

(i).  4-regular on 6 vertices  (ii).  K5    (iii).  C6  

 

(iv).  K6     (v).  K2,3    (vi).  K4,4 . 

B C 

A D 

E 

A 

C 

B 

D 

E 

B A 

C 
D 

A B 

C 

E 

D

F 
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Q3.  (i).  Define the terms walk, trail and path on a graph.  

 

(ii).  Find a walk, closed walk, trail, closed trail (circuit), path and a closed path  

(cycle) on the graph below.  

 

 

 

 

 

 

 

 

 

Q4. (i).  Define the term Euler circuit on a graph and find an Euler circuit on each of the  

graphs below if one exists.  If none exist explain why not.  

 

(ii).  Define the term Hamiltonian cycle on a graph and find a Hamiltonian cycle on  

each of the graphs below if one exists.  If none exist explain why not. 

 

 

 

 

 

 

 

 

 

 

 

Q5.  Sketch the undirected graph G defined below and construct an adjacency matrix for G.  

 

G = { V, E } = {  { 1, 2, 3,4, 5 },   { {1, 2}, {1, 3}, {1, 5}, {1, 5},  

{2, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5} }  }. 

D

A B

C 

E

F H

D

A B

C

E 

F H 

S

P Q R

T
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Q6.  Consider the adjacency matrix  

 























=

01001

10011

00011

01100

11100

5

4

3

2

1

54321

A
.  

 

(i).  Sketch the associated undirected graph, G, clearly labelling all the vertices.  

(ii).  Write down the degree sequence for G. 

(iii).  Show that the Handshaking Lemma holds for G.  

(iv).  Is G Eulerian?  Justify your answer and give an Euler circuit if appropriate.  

(v).  Is G Hamiltonian?  Justify your answer and give a Hamiltonian cycle if  

  appropriate.  

(vi).  Removal of an edge from G results in a bipartite graph.  Identify which edge  

should be removed and sketch the resulting graph.  

(vii).  How many edges need to be added to G to obtain a complete graph?   

Identify which edges need to be added and sketch the resulting graph.  

 

 

 

Q7.  Given a graph, G, its complementary graph denoted G , is obtained from G by  

replacing edges with non-edges and non-edges by edges.  If G is given by the graph  

below sketch its complementary graph, G . 

 

 

 

 

 

 

 

Q8.  A graph, G, is k-regular if all vertices have degree k.  Calculate the degree sum for a  

k-regular graph with n vertices and the number of edges in G. 
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Q9.  In a simple graph, with at least two vertices, there are at least two vertices of the  

same degree.  This result is not true for multigraphs.  Sketch a three vertex  

multigraph with all vertices of different degree. 

 

 

 

Q10.  Consider the graph, G below.  Explain why G does not have a Hamiltonian cycle. 

 

 

 

 

 

 

 

Q11.  Consider the graph, G, below,  

 

 

 

 

 

 

 

(i).  Is G Eulerian?  Either state an Euler circuit on G or explain why G is  

not Eulerian.  

 

(ii).  Is G Hamiltonian?  Either state a Hamiltonian cycle on G or explain  

why G is not Hamiltonian.    

 

 

 

Q12.  Sketch a simple graph G whose vertices all have even degree but G is not Eulerian.  

P Q 

R S 

T U 

V 

P Q R

S T U 

V W 
X 
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Q13.  Consider the graph G below,  

 

 

 

 

 

(i).  Is G Eulerian?  Either state an Euler circuit on G or explain  

why G is not Eulerian..   

 

(ii).  Is G Hamiltonian? Either state a Hamiltonian cycle on G or  

explain why G is not Hamiltonian.    

 

 

 

 

Q14.  Determine whether the complete graphs K77 and K32 are Eulerian.  

 

 

 

 

Q15.  Determine an adjacency matrix and an incidence matrix for the graph shown below,  

 

 

 

 

 

 

 

 

P Q

R 

S T 

U 

1 

3 

2 

4 

a 

b 

c 

d 

e 

f 

g 
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Q16.  An adjacency matrix for an undirected graph, G is given by,   

 



















=

0113

1021

1201

3112

A .  

 

Without drawing G, and using only the matrix A, answer the following: 

 

(i).  How many edges does G have?  

 

(ii).  How many paths of length 2 join Vertices 1 and 4.  

 

 

 

Q17.  How many edges does a tree, T, with 5000 vertices have?  

 

 

Q18.  Determine which complete bipartite graphs, nmK ,  are trees.  

 

 

Q19.  (i). Determine the conditions on r and s that will guarantee that the complete  

bipartite graph, Kr,s will have an Euler circuit.  

 

(ii). How many edges and vertices does the complete bipartite graph srK ,  have?  

Give you answer in terms of r and s.  

 

 

Q20.  Explaining your answer state whether a graph on 7 vertices can have each vertex of  

degree 5.   

 

 

Q21.  Consider a graph G on 12 vertices where each vertex has degree 7.  How many  

edges does G have?  Explain your answer. 
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Q22.  (i)  Sketch the digraph  

 

D = {  { 1, 2, 3, 4 }, { {1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 2}, {3, 4}, {4, 1} }  }. 

 

(ii)  Determine an adjacency matrix for D. 

 

 (iii).  Calculate the in-degree and out-degree of each vertex.  

 

(iv).  State the Handshaking (Di)Lemma and show that it holds for D.   

 

(v).  State what it means for a digraph to be Eulerian.   

 

(vi).  Is the digraph, D, Eulerian?  Explain your answer.   

 

(vii)  Calculate the matrix 3A  and explain the meaning of the entry at position  

(1, 2) in 3A .   

 

 

Q23.  Consider the following adjacency matrix, A, for a digraph, D  

 























=

00101

00110

11010

10001

01000

A .  

 

Without drawing D, and using only the matrix A answer the following: 

 

(i).  Calculate the in-degree and out-degree of each vertex. 

 

(ii).  Determine whether D is Eulerian.  Explain your answer. 

 

(iii).  How many arcs (edges) are there in D?  Explain your answer. 
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Q24.  Determine an adjacency matrix for the digraph below.  

 

 

 

 

 

 

 

 

Q25.  Consider the following adjacency matrix  























=

01010

00000

10001

01000

10010

5

4

3

2

1

54321               

A
.   

 

(i).  Sketch the associated digraph, D, clearly labelling the vertices.  

 

(ii).  Determine whether the digraph is Eulerian and state an Euler circuit if one exists.   

 

 

 

Q26.  (i).  In a cycle graph, nC , state how the number of vertices is related to the number  

of edges.   

 

(ii).  Sketch the cycle graphs 5C  and 6C .  

1 

3 

2 

4 

a 

b 

c 

d 

e 

f 

g 
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Q27. Consider the following multigraph, G. 

 

 

 

 

 

 

 

 

(i). Write down an adjacency matrix for G. ( Note that for an undirected graph we  

define a loop to contribute 2 to the degree of a vertex ).  

 

(ii).  Interpret the row sum of the entries in row j of the adjacency matrix. 

 

(iii).   What is the degree of Vertex 3?  Explain your answer.  

 

 

 

Q28.  (i)  Sketch the complete graph K5 and label the vertices P, Q, R, S and T.  

 

(ii).  Construct an adjacency matrix for K5.  

 

(iii).   Describe an adjacency matrix for the general complete graph, Kn.  

 

(iv).  Interpret the row sum of the entries in row j of the adjacency matrix for Kn.  

 

(v).  How many 1’s are contained in the adjacency matrix for a general Kn?   

 

(vi). Interpret the result in part (v). 

 

 

1 

4 

3 

2 

5 

6 
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Q29.  Let A = {1, 2, 3, 4, 5, 6} and define the relation R as follows,  

 

R = {(1, 1), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),  

(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 5)} on A.   

 

(i).  Sketch the digraph, D, that represents R.   

 

(ii).  Determine an adjacency matrix for R. 

 

 

Q30. (i).  Sketch the directed (digraph) and undirected graphs corresponding to the  

following adjacency matrix.  

 























=

01111

10101

11010

10101

11010

5

4

3

2

1

54321              

A
.   

 

(ii).  For the undirected graph determine the degree of each vertex.  Then for the  

digraph determine the in-degree and out-degree of each vertex. 

 

(iii).  For both undirected and directed graphs determine whether they are Eulerian  

and/or Hamiltonian.  

 

 

Q31.   Explain why it is not possible to have the following adjacency matrix for a simple  

graph, (a simple graph is undirected, unweighted and has no loops or parallel edges),  

 























=

01101

00111

11010

10101

01110

A .  
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Q32.  Determine whether the two graphs below are isomorphic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q33. What is the chromatic number of a cycle graph, nC ? 
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SOLUTIONS 

 

S1.  (i).  Graphs (b) and (c) are connected as there is a path between any two of  

their vertices. 

 

(ii).  Graph (a) is disconnected and its disconnected components are {ABCD}  

and {EF}. Graph (d) is disconnected and its disconnected components are  

{ABE} and {CD}.  

 

(iii).  Graphs (a) and (b) are simple graphs. 

Graph (c) is a multigraph with multiple (parallel) edges {B, C} and {B, C}. 

Graph (d) is a multigraph with multiple (parallel) edges {C, D}  and {C, D}  

and a self-loop {B, B}. 

 

 

S2.(i).       (ii).  

 

 

 

 

 

 

 

 

 

 

 

(iii).       (iv).  
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(v).       (vi).  

 

 

 

 

 

 

S3.  (i).  A walk on a graph is any route from one vertex to another along the edges of the  

graph.  A walk can repeat edges and vertices any number of times and can end  

on any vertex.   

If a walk ends on the vertex it started from it is called a closed walk.   

 

A trail is a walk where all edges are distinct but vertices may be repeated.   

If a trail ends on its starting vertex it is called a closed trail or a circuit.   

 

A path is a trail in which all vertices are distinct.  Hence, in a path neither  

vertices nor edges are repeated.   

If a path ends on its starting vertex it is called a closed path or a cycle.   

 

 

 

 

 

 

 

(ii).  An example of a walk is given by: EHBDEHABAF.  

An example of a closed walk is given by: EHBDEHABAFE. 

 

An example of a trail is given by: EHBDEFA.  

An example of a closed trail, or circuit, is given by: EHBDEFAE.  

 

An example of a path is given by: EHBD.  

An example of a closed path, or cycle, is given by: EHBDE 

 

D

A B

C 

E

F H



55 
 

S4.  

 

 

 

 

 

(i).  An Euler circuit on a graph is a circuit (closed trail) that uses every edge  

exactly once.  Note that we are allowed to use the same vertex multiple times  

but we can only use each edge once.   

A graph is Eulerian if it has an Euler circuit. 

 

 

The graph on the left is Eulerian, and has an Euler circuit, as all vertices are of  

even degree.  An Euler circuit is given by: EFABHEDCBDHAE.   

 

The graph on the right is Eulerian, and has an Euler circuit, as all vertices are of  

even degree. An Euler circuit is given by: PQRSQTP.   

 

 

 

(ii). A Hamiltonian cycle, also called a Hamiltonian circuit, is a circuit (closed  

trail) which passes exactly once through every vertex of a graph G and G is  

called a Hamiltonian graph.  We do not need to use all the edges.   

 

 

The graph on the left is Hamiltonian.   

A Hamiltonian cycle is given by: ABCDHEFA.   

 

The graph on the right is not Hamiltonian as, no matter where we start, we need  

to visit vertex Q twice to get back to the start vertex.  Starting at vertex Q will  

not help as in this case we would visit Q three times! 

D

A B

C

E 

F H

S

P Q R

T
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S5. The graph, G, has 5 vertices and so the adjacency matrix, A, will be 55 × . 























=

01102

10100

11021

00201

20110

5

4

3

2

1

54321

A
.  

 

 

 

S6. (i). The adjacency matrix is 55 ×  and so G has 5 vertices.   























=

01001

10011

00011

01100

11100

5

4

3

2

1

54321

A
  

 

Vertex 1 is adjacent to vertices 3, 4, and 5 so join vertex 1 to each of these three vertices.   

Continue in this manner to obtain the graph below.  

 

 

 

 

 

 

 

 

(ii).  Degree sequence, (2, 2, 2, 3, 3).   

 

(iii).  By the Handshaking Lemma ( )GEv
n

j
j 2)deg(

1

=
=

 where ( )GE  is the number of  

 edges in G.  We therefore have 1233222)deg(
5

1

=++++=
=j

jv  and  

 ( ) 12622 =×=GE .  Hence, the Handshaking Lemma holds for G.  

1 

2 

3 

5 

4 

1 

2 

3 

4 

5 
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(iv).  G is not Eulerian as not all the vertices have even degree.  

 

(v).  G is Hamiltonian as we can visit every vertex of G exactly once and return to the start  

 vertex.  A Hamiltonian cycle is: 154231.  

 

(vi).  Removal of edge (4, 5) results in the bipartite graph below. 

 

 

 

 

 

 

 

 

(vii).  Adding the five edges (1, 2), (2, 5). (3, 4), (3, 5), (4, 5) results in the complete graph K5.  

 

 

 

 

 

 

 

 

S7.  The complementary graph, G  is  

 

 

 

 

 

 

S8.  The regular graph G has n vertices all of degree k and so the sum of all the degrees is nk. 

By the Handshaking Lemma )(2)(deg
1

GEv
n

j
j =

=

 where )( GE  is the number of  

edges in G.  We therefore have 
2

)()(2
kn

GEGEkn == .  

1 

2 

3 

5 

4 

2 

3 

5 

4 

1 
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S9.  In the graph below; deg(P) = 4, deg(Q) = 5, deg(R) = 3 

 

 

 

 

 

 

 

 

S10.  A Hamiltonian cycle visits each vertex of a connected graph exactly once and returns to  

the starting vertex.  Note that G consists of two subgraphs PUV and QRST connected by  

a bridge WX.  If we start on the left-hand-side (PUV) we must cross the bridge (WX) in  

order to visit every vertex on the right-hand-side, but to get back to our starting vertex  

we must cross the bridge again thereby visiting the vertices X and W for a second time.   

Therefore G does not have a Hamiltonian cycle.  

Note: No graph with a bridge has a Hamiltonian cycle. 

 

 

 

S11.  (i).  The graph is not Eulerian as it contains vertices of odd degree, i.e. vertices P,  

S, T and V all have degree 3. 

 

(ii).  The graph is Hamiltonian and a Hamiltonian cycle is, PTUVSRQP.  

 

 

 

S12.  For example, the graph below has every vertex of n degree 2 but it is not Eulerian as  

 it is not connected.   

 

 

 

 

P 

Q 

R 
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S13.  (i).  Eulerian: Yes as all vertices have even degree.  Euler circuit: PSRQSTUPTQP. 

 

(ii).  Hamiltonian: Yes.  Hamiltonian cycle: PQRSTUP. 

 

 

 

 

 

 

 

S14.  The graph K77 is 76-regular and so all vertices therefore have even degree, i.e. all  

vertices have degree 76.  Hence, K77 is Eulerian. 

 

The graph K32 is 31-regular and so all vertices therefore have odd degree, i.e. all  

vertices have degree 31.  Hence, K32 is not Eulerian. 

 

 

 

S15 (i). 



















=

0112

1020

1201

2010

4

3

2

1

4321

A
  (ii).  



















=

1011100

0100110

0110011

1001001

4

3

2

1

M

gfedcba

.  

 

 

 

S16.  (i).  Number of edges in G is, 
( )

∈

=
GVX

XGE )(deg
2

1
)(  1020

2

1 =×= .   

 

( The degree sum (20) is obtained by adding the entries in the adjacency matrix ).  

 

 

(ii)  For the number of paths of length 2 joining Vertices 1 and 4 we must calculate  

the matrix 2A .   

P Q

R 

S T 

U 
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

















=





































=

11558

5627

5267

87715

4

3

2

1

0113

1021

1201

3112

0113

1021

1201

3112

4321                                                           

2A .  

Defining Row 1 to correspond to Vertex 1 and Column 4 to correspond to Vertex 4,  

the matrix shows that there are 8 paths of length 2 joining Vertices 1 and 4.   

 

 

S17.  As T is a tree by definition, T is cycle-free and has n – 1 edges.   

As | V | = 5000 then | E | = 5000 – 1 = 4999.  So T has 4999 edges.  

 

 

S18.  If m = 1 and/or n = 1 then nmK ,  is a tree. 

 

 

S19.  (i).  If r and s are both even the complete bipartite graph, Kr,s will have an Euler  

circuit as each vertex will have even degree. 

(ii).  The complete bipartite graph, srK , , has sr +  vertices and sr ×  edges.   

 

 

S20.  By the Handshaking Lemma it is not possible to construct a graph on 7 vertices where  

each vertex has degree 5 as the sum of the degrees of the vertices will be, 3557 =×   

which is an odd number.  

 

 

S21.  By the Handshaking Lemma the degree sum is twice the number of edges.  Hence, since  

degree sum is 84712 =×  we have that 2| E | = 84 and so the number of edges is 42.  
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S22.  (i).  

(ii). 



















=

0001

1010

1100

1010

4

3

2

1

4321

A
  

 

 

 

(iii). The table shows the in-degrees and out-degrees of each vertex.  

 

 1 2 3 4 Total 

In-degree 1 2 1 3 7 

Out-degree 2 2 2 1 7 

 

 

(iv).  The Handshaking (Di)Lemma states that in any digraph the sum of the  

in-degrees is equal to the sum of the out-degrees and both are equal to the  

number of arcs.  This is because every arc counts exactly once to the out- 

degree total and exactly once to the in-degree total.   

For the digraph D: the sum of the in-degrees (7), equals the sum of the out- 

degrees (7) and both equal the number of arcs (7).  Hence, the Handshaking  

(Di)Lemma holds for D.  .  

 

 

 (v).  A digraph is Eulerian if and only if it is connected and the in-degree of each  

vertex equals its out-degree.  ( Equivalently, a digraph is Eulerian if it is  

connected and there exists a closed trail (circuit) which uses each arc exactly  

once. ) 

 

 

(vi).  No, D is not Eulerian.  The table in part (iii) shows there are vertices where  

the in-degree of the vertex does not equal its out-degree.  We can also obtain  

this result from inspection of the graph or the adjacency matrix. 

1 

3 

2 

4 
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(vii).  The entry at position (1, 2) in 3A  below indicates that there are exactly two  

paths of length 3 from Vertex 1 to Vertex 2, i.e. 1412 and 1232.  

 



















=

1101

2021

2111

2021

4

3

2

1

4321

3A
  

 

 

 

S23.  (i).  Label the rows and columns of the matrix as shown: 

 























00101

00110

11010

10001

01000

T

S

R

Q

P

TSRQP

.   

 

The sum of the entries in row j corresponds to the out-degree of vertex j.   

The sum of the entries in column j corresponds to the in-degree of vertex j.   

 

 P Q R S T 

Out-degree 1 2 3 2 2 

In-degree 2 2 2 2 2 

 

 

(ii).  No, D is not Eulerian as the in-degree does not equal the out-degree for  

each vertex. 

 

 

(iii).  The graph D contains 10 arcs (edges) as each 1 in the adjacency matrix  

corresponds to an arc.  
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S24.(i). Adjacency matrix:  



















=

0001

1010

1100

1010

4

3

2

1

4321

A
   

 

 

 

S25. (i).         























=

01010

00000

10001

01000

10010

5

4

3

2

1

54321               

A
 

 

 

 

(ii)  No, D is not Eulerian as the in-degree does not equal the out-degree for each  

vertex.  We can determine this either from inspection of D or from the adjacency  

matrix.   

 

 

 

S26.  (i).  The number of vertices in nC  equals the number of edges, and every vertex has  

degree 2.  

 

(ii).  The cycle graphs 5C  and 6C  are shown below.  

 

 

 

 

 

 

4 

5 

1 2 

3 
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S27.  (i).  An adjacency matrix is:  



























=

000000

001001

010113

001210

001102

013020

6

5

4

3

2

1

654321

A
.   

 

 (ii). The row sum for row j corresponds to the degree of vertex j. 

 

 (iii).  Vertex 3 has degree 4 as the loop contributes 2 to the degree. 

 

 

 

S28.  (i)  The complete graph K5 is shown below:  

 

 

 

 

 

 

 

(ii).  An adjacency matrix for K5 is:  

 























=

01111

10111

11011

11101

11110

T

S

R

Q

P

A

TSRQP

.  

 

(iii).  An adjacency matrix for Kn will have 0’s on the leading diagonal and 1’s  

elsewhere. 

 

(iv).  The sum of the entries in row j corresponds to the degree of vertex j. 

P 

S R 

Q T 
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(v).  The complete graph nK  has n vertices and so an adjacency matrix will be an  

)( nn ×  matrix.  Each row of the adjacency matrix will contain 1−n , 1’s,  

giving a total of )1( −nn , 1’s.  

 

 

 (vi).  If the )1( −nn , 1’s are summed this gives the degree sum of all the vertices  

which, by the Handshaking Lemma, is even and twice the number of edges.  

 

 

 

 

S29. (i).  The digraph is:  

 

 

 

 

 

 

 

 

 

 

 

(ii).  























=

10011

01111

01110

11100

11001

5

4

3

2

1

54321                

A
.  

 

4 5 

1 2 
3 
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S30.  (i).  























=

01111

10101

11010

10101

11010

5

4

3

2

1

54321              

A
 

 

 

 

 

 

 

 

 

Undirected       Directed 

 

 

Undirected Graph 

 

Vertex Degree 

1 3 

2 3 

3 3 

4 3 

5 4 

 

Directed Graph 

 

Vertex Indegree Outdegree 

1 3 3 

2 3 3 

3 3 3 

4 3 3 

5 4 4 

1 

2 

3 

4 5 

1 

2 

3 

4 5 
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(iii).  Undirected 

No, the graph is not Eulerian as it contains vertices of odd degree.   

Yes, the graph is Hamiltonian as it is possible to start at a vertex, visit each vertex  

exactly once and return to the starting vertex.  Hamiltonian cycle: PQRSTP.  

 

Directed 

Yes, the graph is Eulerian as the in-degree equals the out-degree at each vertex.   

Can you find an Euler circuit?  

Yes, the graph is Hamiltonian as it is possible to start at a vertex, visit each vertex  

exactly once, and return to the starting vertex.  Hamiltonian cycle: PQRSTP.   

 

 

 

 

S31.  The adjacency matrix has dimension, 55 ×  so that the graph will have 5 vertices.  

The rows of the adjacency matrix show that each vertex has degree 3.  Hence, the sum  

of the degrees will be 1535 =× , i.e. an odd number.  However, this is impossible as  

the Handshaking Lemma states that if the degrees of all the vertices in a graph are  

summed the result must be an even number. 

 

 

S32.  The graphs are isomorphic under the correspondence shown: 

 

 

 

 

 

 

 

a b 

f q

g 

d e

a b 

f 

q

g

d e 
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The adjacency list is the same for both graphs:  

 

α β, δ 

β α, γ, ε 

γ β, φ, θ 

φ γ, θ 

θ ε, γ, φ 

ε δ, θ, β 

δ α, ε 

 

 

 

S33.  The chromatic number of a cycle graph, nC , is 2 if n is even and 3 if n is odd.  


