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1.  Introduction 

 In life there is no certainty about what will happen in the future but decisions still have to be 
taken.  Therefore, decision processes must be able to deal with the problems of uncertainty.  

 Uncertainty creates risk and this risk must be analysed.  Both qualitative and quantitative 
techniques for modelling uncertainty exist.  In many situations large amounts of numerical 
data is available which requires statistical techniques for analysis.  

  
 Quantitative modelling of uncertainty uses a branch of mathematics called Probability.  This 

unit introduces the concepts of probability and probability distributions.  
 
 The application of statistical methods is very extensive and is used in all branches of Science 

and Technology, Industry, Business, Finance, Economics, Sociology, Psychology, Education, 
Medicine etc. 
 
 
Examples of Scenarios Involving Uncertainty  
In the following examples consider elements of uncertainty involved: 
 

• A production scenario [ costs and availability of raw materials, labour, production  
 equipment; demand for product, etc. ] 

• Aircraft design [ reliability of components, systems, safety issues, etc. ] 
• Financial Investment [ interest rates, markets, economic issues, etc. ] 
• Development of a new drug [ reliability, trials, etc. ] 

 
Statistics is sometimes described as the science of decision making under uncertainty and can be 
divided into two broad areas as follows: 
 
 
Descriptive Statistics which includes the organisation of data, the graphical presentation of 
data (pie charts, bar charts, histograms, etc.) and the evaluation of appropriate summary 
statistics (measures of average e.g. the arithmetic mean and measures of spread e.g. standard 
deviation).  Descriptive statistics are the first step in analysing data and always precedes 
inferential statistics but can be, depending on the type of study, the only way to analyse 
collected data.  
 
 
Inferential Statistics which covers those statistical procedures used to help draw conclusions or 
inferences about a population on the basis of a sample of data collected from the population.  
Sampling is necessary because measuring every member of a population is time-consuming and 
expensive, impractical or impossible.  Important areas inferential statistics include confidence 
intervals, hypothesis tests, regression analysis and experimental design.  Underlying inferential 
statistics is the idea of probability and probability distributions. 
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Some Terminology 
It is important, when dealing with data, to have an understanding of the terms used.  Some are given 
below. 
 
 
Random Variable 
Data may come from a survey, a questionnaire or from an experiment.  The ‘quantity’ being 
measured or observed is referred to as a random variable as it may vary from individual to 
individual, e.g. heights of university students.  It is commonly denoted by a symbol such as x.  There  
are two types of random variable: qualitative and quantitative. 
 
 
Qualitative Variables  
These variables cannot be determined numerically and are usually measured categorically.  Examples 
include hair colour, blood group, marital status, gender.  
 
 
Quantitative Variables  
These variables can be determined numerically which allows comparison between values on the 
basis of magnitude.  Examples include height of university students, daily temperature, daily £/Euro 
exchange rate. 
 
Such variables can be further split into: 
 

• discrete where the variable can take only values which differ among themselves by certain 
fixed amounts, usually integers (e.g. counts such as daily number of breakages of cups in a 
refectory)  

 
• continuous where the variable can take any value within a given range (e.g. temperature at 

midday on a series of days). 
 
 
Population  
A population is the entire group of units, individuals or objects from which data concerning 
particular characteristics are collected or observed.  Generally, it is impractical to observe the entire 
group, especially if it is large, and a representative part of the population called a sample is usually 
considered. 
 
 
Sample 
A sample is a representative collection of observations taken form the population.  A random 
sample is a sample selected in such a way that each member of a population has an equal chance 
of being included in the sample. 
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2.  Probability  

The idea of probability is familiar from games of chance such as card games.  
 

Definition of Probability 

If an experiment is performed a large number of times (say, N), and the number of times that 
a particular event A occurs is counted (say, n), we define: 
 

Probability of event A occurring, denoted by P (A)  = 





∞→

N
nN

lim
  . 

In other words, the probability that the event A occurs in any one performance of the 
experiment, is defined to be the limiting value of the proportion of times that A would occur 
if the number of repetitions of the experiment tended to infinity. For example, consider the 
experiment of tossing a fair coin. The set of possible outcomes for this experiment is {H, T}, 
the letter H representing the simple event “Heads”, and T representing “Tails”.  According to 
this definition we would assign equal probability of 0.5 to each of these outcomes, because, 
in a large number of tosses, heads and tails turn up an approximately equal number of times.  
 
If an experiment has n equally likely outcomes, r of which produce the event A then 
 

   P(A) = 
outcomesofnumber  total

  give which outcomes ofnumber A
  = 

n
r

 

 
For example, consider the standard pack of 52 playing cards and an experiment defined by 
drawing a card from a well-shuffled pack. According to this definition, there are 52 possible 
outcomes to this experiment, and, if the shuffling is done thoroughly, it seems reasonable to 
regard them as equally likely.  
 
Probability values may also be determined from sample data. 
 
Examples  
 
E1. Suppose that the probability of an error existing in a set of accounts is 0.15.  This is 

equivalent to saying that 15% of all such accounts contain an error. 
 
E2. Suppose that 45% of “small” businesses go bust within a year.  This is equivalent to 

saying that a randomly chosen “small” business has a probability of 0.45 of going 
bust within a year. 

 
E3. The probability of throwing a head when a fair coin is tossed is 0.5. 
 
E4. A bag of sweets contains 5 Chews, 3 Mints and 2 Toffees.  If a sweet is chosen at 

random from the bag, what is the probability that it is: 
 

(a).  a Chew; (b).  a Chew or a Toffee;  (c).  Not a Toffee?  
 

Answers: (a). 0.5;  (b). 0.7;  (c). 0.8.  
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E5. From a complete pack of playing cards (ace high) one card is picked at random.  What 
is the probability of the card being: 

 
(a).  a red;    (b).  a black picture card (J,Q,K or A);  
(c).  lower than a 7 or higher than a 9? 

 
Answers:  (a). 26/52;    (b). 8/52;   (c). 40/52 

 
E6. A factory manager inspects a batch of 1000 components and finds 75 of them faulty.  

On the basis of this data find the probability that a component chosen at random from 
the batch will be faulty. 
 

Answer:  0.075 
 

E7. Over the past 80 trading days on the London Stock Exchange, the closing DJIA index 
(Dow Jones Industrial Average) has fallen on 64 days, risen on 12 days and stayed the 
same on the remaining 4 days.  The probability that it will fall on the next trading day 
is 64/80 = 0.8. 
 

E8. A company receives regular deliveries of raw materials from a supplier.  The supplies 
do not always arrive on time.  Over the last 100 delivery days, supplies have been late 
on 13 occasions.  The probability that the supplies will be on time on the next delivery 
day is 87/100 = 0.87. 

 
 
Subjective Definition of Probability 
 
There are situations where the above definitions seem to be appropriate and we must use a 
probability supplied by an ‘expert’.  This is often the case in finance and economics. 
 
Examples of Subjective Definition 
 
1.  What is the probability that Great Britain will adopt the Euro within the next 10 years?  
 
2. What is the probability that a company’s stock will rise in value over the next year? 
 
3. What is the probability that a particular football club will win the Champions League? 
 

More Terminology 

An experiment is an act or process of observation that leads to a single outcome that cannot 
be predicted with certainty.  
 
A sample point is the most basic outcome of an experiment.  
 
The set of all possible outcomes to a random experiment (all the sample points) is called the 
sample space.  
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Elements of the sample space are also called simple events.  Simple events for the example 
of drawing a playing card from a well-shuffled pack would be “Ace of Clubs” or “Three of 
Hearts”, etc. 
 
Events consisting of more than one simple event are called compound events.  For example, 
a compound event for this experiment would be “Drawing a Heart”. 
 
Consider the three compound events “Drawing an Ace”, “Drawing a Heart”, and “Drawing a 
Face Card” (i.e. one of King, Queen, Jack). 
 

   P (Ace)   =  
4

52
  = 

13

1
 

 

   P (Heart)   =  
13

52
  = 

1

4
 

 

   P (Face Card)  =  
12

52
  = 

3

13
 

 
 
Note 
In these notes we use simple examples to illustrate the ideas discussed. Probabilities of events 
will be determined in different ways using sample points, relative frequency counting, laws 
of probability, two-way tables and probability trees. In any given situation, always use the 
quickest way! 
 
 
3 Basic rules of probability 
 

If nEEEE ,....,,, 321  are the set of possible simple events which could occur from an 

experiment, then  
 

(a). 1  )(  0 ≤≤ iEP   (b). 1)( = iEP  

 
or, in other words: 

 
(a). All probabilities must be between 0 and 1.  

 
 An event that will never occur has probability 0.  
 An event that is certain to occur has probability 1.  

 
 

(b). The sum of the probabilities of all possible simple events must equal 1. 
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Probability of an event using Sample Points 
We can summarise the steps for calculating the probability of an event as follows: 
 

1. Define the experiment. 
2. List the sample points. 
3. Assign probabilities to sample points. 
4. Determine the collection of sample points contained in the event of interest.  
5. Add up these sample probabilities to find the event probability. 

 

4 Complementary events 

 
The complement of an event E is defined as the event that must take place if E does 
not occur. It is written E'. For example, if E = Student is male, E' = Student is female.  
 
As either E or E' must take place we have, from Rule (b) above, 
 

1)P(E'P(E) =+  or P(E)1)P(E' −= .  

This is useful because finding the probability of the complement of an event is 
sometimes easier than finding the probability of the event in question. 

 
Diagrammatically this can be represented as follows: E' 
 

E 'E

 

 

5 Addition Law for Compound Events: A or B 

 
Suppose A and B are two events in a given situation. If A and B cannot possibly occur 
simultaneously they are said to be mutually exclusive events. 
 
For mutually exclusive events the probability that one event or the other occurs is 
given by: 
 

 
)B(P)A(P)B or A(P +=  

 

Addition law for 
mutually exclusive 
events 
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If two events are not mutually exclusive, i.e. they can take place at the same time, 
then the probability of at least one of the events occurring is given by:  
 
 
 

)BandA(P)B(P)A(P)BorA(P −+=  
 
 
NOTE: For mutually exclusive events 0  )B and A(P =  so the general addition law 

“collapses” to the addition law for mutually exclusive events.  
 

To represent this diagrammatically, consider the following: 
 

BA

B

A

 
 
 
 

Examples 
 

1. What is the probability of throwing a 5 or a 6 in one roll of a six-sided die? 
(Ans: 1/3) 

 
 
 2. A bag contains a large number of balls coloured red, green or blue. If the 

probability of choosing a red ball from the bag is 0.425 and the probability of 
choosing a blue ball from the bag is 0.35, what is the probability of choosing 
either a red or a blue ball from the bag?  (Ans: 0.755)  

 
 

3. In example 2 above, if there are 200 balls in the bag, how many balls will be 
green?  (Ans: 49) 

 
 
4. A card is drawn from a standard pack. F is the event “face card is drawn” and 

H is the event “heart is drawn”. What is the probability that a face card or a 
heart is drawn? 

  (Ans: 25/52) 
 
 
 
 

General 
addition law  
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6 Multiplication Law for Compound Events: A and B 

 
If two events, A and B, are independent (i.e. the occurrence of the first event has no 
effect on whether or not the second event occurs) we have: 
 

 
)B(P  )A(P  )B and A(P ×=  

 
 
On the other hand if the probability of the second event occurring will be influenced 
by whether the first event occurs then we must introduce some new notation. 
 
The probability that an event B will occur given that a related event A has already 
occurred is called the conditional probability of B given A and is denoted P(B|A). 

 
We can then calculate the probability that both A and B will occur from:  
 
 

×=  )A(P  )B and A(P  P (B|A) 
 
 
 (Note that if the events are independent, then )B(PP(B|A) =  and the above rules are 
equivalent) 
 
Examples 
 
1. The probability that a new small firm will survive for 2 years has been 

estimated at 0.22. Given that it survives for 2 years, the probability that it will 
have a turnover in excess of £250,000 per annum in a further 3 years is 
estimated at 0.44. Determine the probability that a new business starting now 
will have a turnover of more than £250,000 in 5 years. 
(Ans: 0.0968) 

 
2. 42% of a population is aged 25 or over.  Of such people, 75% have life 

insurance.  Calculate the probability of a person selected at random being over 
25 with no life insurance. 
(Ans: 0.105) 

 
 
 
 

 

 
 

Multiplication law 
for independent 
events 

General 
multiplication law  
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7 Bayes’ Theorem  
 

The general multiplication law in 1.7 is often rearranged to form what is known as 
Bayes’ Theorem: 
 
 

)A(P

)B(P).B|A(P

)A(P

)B and A(P
)A|B(P ==  

 
 
Often, P(B) is termed a prior probability − it is calculated without taking into account 
the influencing event A.  P(B|A) on the other hand is termed a posterior probability- 
it gives a revised probability that B will occur. 

 
 
Note:   In the above formula P(A|B) and P(B|A) are very different probabilities, e.g. suppose 

A denotes "I use an umbrella" and B = "it rains".   
P(A|B) is the probability that if it rains then I will use an umbrella (quite high) and 
P(B|A) is the probability that if I use an umbrella then it will rain. 

 
 The use of Bayes’ Theorem is illustrated in the examples in the next section. 
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8 Tree Diagrams 

A useful way of investigating probability problems is to use what are known as tree 
diagrams.  Tree diagrams are a useful way of mapping out all possible outcomes for a 
given scenario. They are widely used in probability and are often referred to as 
probability trees. They are also used in decision analysis where they are referred to as 
decision trees. In the context of decision theory a complex series of choices are 
available with various different outcomes and we are looking for the bets of these 
under a given performance criterion such as maximising profit or minimising cost.  
 

The use of a tree diagram is best illustrated with some examples. 
 

Example 1 
Suppose we are given three boxes, Box A contains 10 light bulbs, of which 4 are 
defective, Box B contains 6 light bulbs, of which 1 is defective and Box C contains 8 
light bulbs, of which 3 are defective.  We select a box at random and then draw a light 
bulb from that box at random.   What is the probability that the bulb is defective? 
 
Here we are performing two experiments: 
   
 a) Selecting a box at random 
 b) Selecting a bulb at random from the chosen box 
 
If A, B and C denote the events choosing box A, B, or C respectively and D and N 
denote the events defective/non-defective bulb chosen, the two experiments can be 
represented on the diagram below. 
We can compute the following probabilities and insert them onto the branches of the 
tree: 

=)A(P 1/3;  =)A|D(P 4/10;  =)A|N(P 6/10;  
=)B(P 1/3;  =)B|D(P 1/6;  =)B|N(P 5/6; 
=)C(P 1/3;  =)C|D(P 3/8;  =)C|N(P 5/8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N 

D 

N 

D 

A 

B 

C 

1/3 
4/10 

N 

D 

1/3 

1/3 

6/10 

5/6 

1/6 

5/8

3/8 

To get the probability for a particular path of the tree 
(left to right) we multiply the corresponding probabilities 
on the branches of the path.   
 
For example, the probability of selecting box A and then 
getting a defective bulb is: 
 

×=  )A(P  )D and A(P  P(D|A) = 1/3 * 4/10 = 4/30. 
 
Since all the paths are mutually exclusive and there are 
three paths which lead to a defective bulb, to answer the 
original question we must add the probabilities for the 
three paths, i.e., 
 
 4/30 + 1/3*1/6 + 1/3*3/8 = 2/15 + 1/18 + 1/8 = 0.314. 
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Example 2 
Machines A and B turn out respectively 10% and 90% of the total production of a certain 
type of article. The probability that machine A turns out a defective item is 0.01 and the 
probability that machine B turns out a defective item is 0.05. 
 

(i) What is the probability that an article taken at random from the production line 
is defective? 
 

(ii) What is the probability that an article taken at random from the production line 
was made by machine A, given that it is defective? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

0.1 

0.9 

0.01

0.05 

0.99 

0.95

D 

D 

N 

N 

(i) P(D)  = P(D and A) + P(D and B) 
 

 = P (D|A) P (A) + P (D|B) P (B) 
 
 = 0.01*0.1 + 0.05*0.9 = 0.046 
 
 

(ii) P(A|D) = 
P(D)

D) and A(P
 

   

  =  
0.046

1.0*01.0
 

 
  =    0.022 
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9 Problems on Probability 

1.  A ball is drawn at random from a box containing 10 red, 30 white, 20 blue and 15 orange 
balls.  Determine the probability that it is 

 

(a)  orange or red  (b)  neither red nor blue  (c) not blue   

(d)  white   (e)  red, white or blue. 

(Ans: 1/3; 3/5; 11/15; 2/5; 4/5) 

 

 

1. Assembly line items, on inspection, may be classified as passed, reparable or failed .  
The probability that an item is passed is13/20.  The probability that an item is failed is 
3/40. 

 

(a) Calculate the probability that an item is reparable. 

(b) If 1000 items are inspected, determine the expected number in each class. 

(Ans: 11/40; 650, 75, 275) 

 

 

2. Two firms out of five have a pension scheme, while one firm out of 10 has a sports 
club.  It is known that one firm out of 20 have both.  What proportion of firms have a 
pension scheme or a sports club? 

(Ans: 9/20) 

 

 

3. The probability that a family chosen at random from Britain has a combined income 
above £40,000 is 0.8.  The probability that a family chosen at random from Britain has 
an income above £40,000 and a car is 0.6.  Calculate the probability that a family 
chosen at random from Britain has a car given that it has a combined income above 
£40,000. 

(Ans: 0.75) 

 

4. Four out of 10 new cars are both foreign and need repair within 2 years.  It is known 
that 7 out of 12 new cars are foreign.  Calculate the probability of a new foreign car 
needing repair within 2 years. 

(Ans: 24/35) 

 

  
5. A foreman for an injection-moulding firm concedes that on 10% of his shifts, he 

forgets to shut off the injection machine on his line.  This causes the machine to 
overheat, increasing the probability that a defective moulding will be produced during 
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the early morning run from 2% to 20%.  What proportion of the mouldings from the 
early morning run may be expected to be defective? 

(Ans: 5.6%) 

 

 
6. In a bolt factory, machines A, B and C manufacture 25%, 35% and 40% respectively 

of the total output of bolts.  Of their outputs, 5%, 4% and 2% respectively are 
defective.  A bolt is chosen at random from the factory's output and found to be 
defective.  What is the probability that it came from machine 

(a) A  (b) B  (c) C? 
(Ans: 25/69;28/69; 16/69) 

 
8. A factory has a machine which measures the thickness of washers and classifies them 

as defective or satisfactory.  The machine can make two type of error.  On average, it 
classifies 1 out of every 100 defective washers as satisfactory and it classifies 3 out of 
every 100 satisfactory washers as defective. 
5% of the washers produced are, in fact, defective. 

Calculate 

(a) the expected proportion of washers classified as satisfactory by the machine; 
(b) the expected proportion of those washers classified by the machine as 

satisfactory which will, in fact, be defective. 
(Ans: 0.922; 0.00054) 
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10 Probability Distributions 
 
Now that we have explored the idea of probability, we can consider the concept of a 
probability distribution. In situations where the variable being studied is a random variable, 
then this can often be modelled by a probability distribution. Simply put, a probability 
distribution has two components: the collection of possible values that the variable can take, 
together with the probability that each of these values (or a subset of these values) occurs. 
 
So, in stochastic modelling, a probability distribution is the equivalent of a function in 
deterministic modelling (in which there is no uncertainty). As we know, there are many 
different functions available for deterministic modelling and some of these are used more 
often than others e.g. linear functions, polynomial functions and exponential functions. 
Exactly the same situation prevails in stochastic modelling. Certain probability distributions 
are used more often than others. These include the Binomial Distribution, the Poisson 
Distribution, the Uniform Distribution, the Normal Distribution and the Negative Exponential 
Distribution. 
 
At the beginning of this chapter we distinguished between discrete and continuous variables 
and we will consider their probability distributions separately, commencing with the 
probability distribution of a discrete variable. 
 
11 Discrete Probability Distributions 
 
A discrete random variable assumes each of its values with a certain probability, i.e. each 
possible value of the random variable has an associated probability.  Let X be a discrete 
random variable and let each value of the random variable have an associated probability, 
denoted p(x) = P(X = x), such that 
 

X x1 x2 . . . xn 
p(x) p1 p2 . . . pn 

 
The function p(x) is called the probability distribution of the random variable X if the 
following conditions are satisfied: 
 
   (i)  p(x) ≥ 0 for all values x of X,    (ii)    =

x
1p(x) . 

                                                       
p(x) is also referred to as the probability function or probability mass function.   
 
Again we will use simple examples to illustrate the ideas involved. 
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Example 1 Throw a dice and record the number thrown. This is a random variable with the 
following probability distribution:  
 

x 1 2 3 4 5 6 
p(x) 1/6 1/6 1/6 1/6 1/6 1/6 

 
Clearly, here it is easy to check that p(x) ≥ 0 for all values x and  Σ p(x) = 1, so the required 
conditions are satisfied. 
 

Example 2  Consider an experiment that consists of tossing a fair coin twice, and let X equal 
the number of heads observed. We can list all the possible outcomes as shown in the table 
below. 

 
Simple events 
 

Toss  1 Toss 2 P(Ei) X 

E1 H H 1/4 2 
E2 H T 1/4 1 
E3 T H 1/4 1 
E4 T T 1/4 0 

 
This gives the following probability distribution. 
 

X 
 

Simple events corresponding to 
 values of X 

P(X) 
 
 

0 E4 1/4 
1 E2,  E3 1/2 
2 E1 1/4 

 
Once again we see that the required conditions hold: p(x) ≥ 0 for all values x and  Σ p(x) = 1. 
 
 
Note 
1. In the examples above, probabilities have been computed by counting and relative 

frequency considerations. As we will see, often the probabilities of a random variable 
X are determined by means of a formula, e.g. p(x) = x2/10.  Individual probabilities 
for each X value can be found by substituting the value into the given expression and 
calculating the resulting value of the expression.   

 
2. In some cases, it may be necessary to compute the probability that the random 

variable X will be greater than or equal to some real number x, i.e. P(X ≥ x).  This 
represents the sum of the point probabilities from and including the value x of X 
onwards. This probability is defined as a cumulative distribution. For many 
probability distributions cumulative probabilities are given in statistical tables. 
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12 The Expected value and Variance of a Discrete Probability Distribution 
 
Since the probability distribution for a random variable is a model for the relative frequency 
distribution of a population (think of organising a very large number of observations of 
discrete random variable into a relative frequency distribution-the probability distribution 
would closely approximate this), the analogous descriptive measures of the mean and 
variance are important concepts. 
 
The expected value (or mean), denoted by E(X) or µ, of a discrete random variable X with 
probability function p(x) is defined as follows: 
 

= xp(x)E(X) , 

 
where the summation extends over all possible values x. 

Note the similarity to the mean fx
n

1
(where n = f  ) of a frequency distribution in which 

each value, x, is weighted by its frequency f.  For a probability distribution, the probability p(x) 
replaces the observed frequency f. 
 
Note 
1. The concept has its roots in games of chance because gamblers want to know what they 

can "expect" to win over repeated plays of a game.  In this sense the expected value 
means the average amount one stands to win (or lose) per play over a very long series of 
plays.  This meaning also holds with regard to a random variable, i.e. the long-run 
average of a random variable is its expected value.  The expected value can also be 
interpreted as a "one number" summary of a probability distribution, analogous to the 
interpretation of the mean of a frequency distribution. 

 
2. The terminology used here of “expected” is a mathematical one, so a random variable 

may never actually equal its expected value. The expected value should be thought of as 
a measure of central tendency. 

 
The variance of a random variable X, denoted by Var(X) or σ2, is defined as the expected value 
of the quantity (X− µ)2 where µ is the mean of X, i.e. 

     
Var(X) =  E[(X−µ)2] =  p(x)μ)-(x 2  

 
The standard deviation of X is the square root, σ, of the variance. 
 
Note 
1. As for frequency distributions of observed values, the standard deviation is a measure of 

the spread or dispersion of the values about the mean. 
 

2. Note that random variables are usually denoted by capital letters e.g. X, Y, Z and actual 
values of the random variables by lower case letters x, y, z etc. 
Also, the characteristics of a distribution (mean, standard deviation etc) of a random 
variable are denoted by Greek letters (µ, α etc). 
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Example  
Consider an experiment that consists of tossing a fair coin three times, and let X equal the 
number of heads observed, describe the probability distribution of X and hence determine 
E(X)  and  Var(X) . 
 
There are 8 possible outcomes here: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT 
This gives probability distribution as follows: 
 

X Outcomes Probability 

0 TTT 1/8 

1 HTT, THT, TTH 3/8 

2 HHT, HTH, THH 3/8 

3 HHH 1/8 

 Total probability: 1.0 

 
 
The expected value of X is: 
 
E(X) = 0(1/8) + 1(3/8) + 2(3/8) + 3(1/8) = 0 + 3/8 + 6/8 + 3/8 = 12/8 = 1.5. 
 
The variance of X is: 
 
Var(X)  = (0 – 1.5)2(1/8) + (1 – 1.5)2(3/8) +(2 – 1.5)2(3/8) +(3 – 1.5)2(1/8) 
 = 2.25(1/8) + 0.25(3/8)+ 0.25(3/8) + 2.25(1/8) 

= (2.25 + 0.75 + 0.75 + 2.25)/8 
 = 6/8 
  = 0.75 
 
There is an alternative way of computing Var(X). It can be shown that: 
 

Var(X) = [ ]22 xp(x)p(x)x  −  . Using this result we have the table below. 

 
x P(x) xP(x) x2P(x) 
0 1/8 0 0 
1 3/8 3/8 3/8 
2 3/8 6/8 12/8 
3 1/8 3/8 9/8 
Total 1.0 1.5 3.0 
 
Var(X)  = 3.0 – 1.52 = 3.0 – 2.25 = 0.75 [the same answer as before]. 
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Many different discrete distributions exist and most have proved useful as models of a wide 
variety of practical problems.  The choice of distribution to represent random phenomena 
should be based on knowledge of the phenomena coupled with verification of the selected 
distribution through the collection of relevant data.  A probability distribution is usually 
characterised by one or more quantities called the parameters of the distribution.   
 
Two important discrete probability distributions are the Binomial Distribution and the 
Poisson Distribution.  
 
 
13 The Binomial Distribution 
 
The Binomial Distribution is a very simple discrete probability distribution because it 
models a situation in which a single trial of some process or experiment can result in only one 
of two mutually exclusive outcomes the trial (called a Bernoulli trial after the mathematician 
Bernouilli). We have already met examples of this distribution in the earlier discussion on 
probability. 
 
Example 1  
If a coin is tossed there are two mutually exclusive outcomes, heads or tails. 
 
Example 2 
If a person is selected at random from the population there are two mutually exclusive 
outcomes, male or female. 
 
Terminology 
It is customary to denote the two outcomes of a Bernoulli trial by the terms “success” and 
“failure”. 
Also, if  p  denotes the probability of success then the probability of failure  q  satisfies 
 

q = 1 − p 

A Binomial Experiment 

A sequence of Bernoulli trials forms a Binomial Experiment (or a Bernoulli Process) under 
the following conditions. 
 
(a) The experiment consists of n identical trials. 
 
(b) Each trial results in one of two outcomes.  One of the outcomes is denoted as  
 success and the other as failure. 
 
(c) The probability of success on a single trial is equal to p and remains the same from 
 trial to trial.  The probability of failure q is such that q = 1 − p. 
 
(d) The trials are independent. 
 
 



19 
 

Binomial Distribution 

Consider a binomial experiment consisting of n independent trials, where the probability of 
success on any trial is p. The total number of successes over the n trials is a discrete random 
variable taking values from 0 to n. This random variable is said to have a binomial 
distribution. 
  
As stated earlier, we have already met examples of the Binomial Distribution. Let us revisit 
the example in the previous section and examine it from a new perspective. 
 
Example 3  
Consider an experiment that consists of tossing a fair coin three times, and let X equal the 
number of heads observed, describe the probability distribution of X.  
Recall that we listed all possible outcomes (we could have drawn a probability tree to do this) 
and then worked out the appropriate probabilities.  
 
Key observation: for each possible value of X, each individual outcome which results in this 
value will have the same probability.  
 
For example,  
 
P(X = 1 ) = P(HTT) + P(THT) + P(TTH) = pqq + qpq + qqp = 3pqq = 3pq2 = 3(1/2)(1/2)2= 
3/8 
 
In other words we can see that: 
 
P(X = 1) = [number of ways X = 1 can occur]*[probability of any one way in which X = 1] 
 
This observation holds in the general case and we can now present the general result. 
 

General Formula for the Binomial Probability Distribution 

 
If p is the probability of success and q the probability of failure in a Bernoulli trial, then the 
probability of exactly x  successes in a sequence of  n  independent trials is given by 
 

P(X = x) = nCx p
x qn-x 

 
The symbol nCx denotes the number of x-combinations of n objects. This symbol arises from 
investigating how to count the number of ways in which an event can occur. We will look at 
a couple of examples involving counting before returning to the Binomial distribution. 
 
A formula for nCx 
 
nCx  = 

...x1.2.3.....

1)+x-......(n 2)-(n 1)n(n −
=

x)!(nx!

n!

−
, where n!=n(n – 1)(n – 2)…3.2.1 

 
Note  
Values for nCx can be obtained using a calculator. 
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Example 4 
Suppose that 24% of companies in a certain sector of the economy have announced plans to 
expand in the next year (and the other 76% will not).  In a sample of twenty companies 
chosen at random drawn from this population, find the probability that the number of 
companies which have announced plans to expand in the next year will be 
 
(i) precisely three, (ii)  fewer than three, (iii) three or more, (iv) precisely five. 
 
The values of n. p and q here are: 
 
n = number in the sample = 20 
 
p = probability a company, chosen at random, in a certain sector of the economy has 
announced plans to expand in the next year  = 0.24 
 
q = not p  = 0.76 
  
(i)  P(x = 3) = 20C3 (0.24)3 (0.76)17  = 0.1484 
 
(ii)  P(x ≤  2) = P(0) + P(1) + P(2) 
 

= (0.76)20 + 20C1 (0.24) (0.76)19 + 20C2 (0.24)2 (0.76)18 
 

= 0.0041 + 0.0261 + 0.0783  =  0.1085 
 
(iii)  P(x ≥ 3) = 1 -  P(x ≤  2) = 1 - 0.1085  = 0.8915 
 
(iv)  P(x = 5) = 20C5 (0.24)5 (0.76)15  = 0.2012 
 
Note 
The above example illustrates the importance of having an efficient way of “counting”. With 
a small number of possibilities to investigate, we can simply draw up a list or a tree, but this 
is not feasible with larger numbers. 
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Statistical Tables for the Binomial Distribution 
 
In the above examples we have worked out various probabilities using the formula for the 
Binomial distribution. We can also make use of Murdoch and Barnes Statistical Tables.  
 
Probabilities are tabled in the form of Cummulative Binomial Probabilities i.e. the tables 
give the probability of obtaining r or more successes in n independent trials. 
 
Note that probabilities are tabulated for selected values of p, n and r only. 
 

Binomial Distribution Summary 
 
 If X~B(n,p), then: 

                               p(x)=P(X=x) = nCxp
xqn-x , where q = 1 – p, and nCx = 

x)! - (n x!

n!
 

The mean:  μ=E(X) = n.p 
 
The variance: σ2 = Var(X) = n.p.q 
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14 The Poisson Distribution 
 
Suppose that events are occurring at random points in time or space. The Poisson distribution 
is used to calculate the probability of having a specified number of occurrences of an event 
over a fixed interval of time or space. It provides a good model when the data count from an 
experiment is small i.e. the number of observations is rare during a given time period. 
 
Examples 
Some examples of random variables which usually follow the Poisson distribution are: 
 
 1. The number of misprints on a page of a book. 
 2. The number of people in a community living to 100 years of age. 
 3. The number of wrong telephone numbers dialled in a day. 
 4. The number of customers entering a shop on a given day. 
 5. The number of α-particles discharged in a fixed period of time from some     
                radioactive source. 
 
A random variable X satisfies the Poisson Distribution if 
  
1.  The mean number of occurrences of the event, m, over a fixed interval of time    
  or space is a constant. This is called the average characteristic. (This implies   
  that the number of occurrences of the event over an interval is proportional to   
  the size of the interval.) 
  
2.  The occurrence of the event over any interval is independent of what happens    
  in any other non-overlapping interval. 
 
If X follows a Poisson Distribution with mean m, the probability of x events occurring is 
given by the formula:  

    
x!

me
x)P(X

xm−
==  

 
Note 
1.  The Poisson distribution is tabulated, for selected values of m, in Murdoch and    
  Barnes Statistical Tables as a cumulative distribution ie P(X ≥ x). 
 
2. A Poisson random variable can take an infinite number of values. Since the  
 sum of the probabilities of all the outcomes is 1 and if, for example, you require      
 the probability of 2 or more events, you may obtain this from the identity 
 P(X ≥ 2) = 1 - P(X = 0) - P(X = 1) or from Table 2 of Murdoch and Barnes. 
  
3. For the Poisson distribution, mean = variance = m. 
 

Poisson Distribution Summary  

If X~P(m), then:       p(x)=P(X=x) = 
x!

me x-m

,  

 
Mean = variance:   μ = σ2 = m 
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15 Continuous Probability Distributions 
 
For a discrete random variable, probabilities are associated with particular individual values of  
the random variable and the sum of all probabilities is one.  For a continuous random variable  
X, we do not have a formula which gives the probability of any particular value of X.  The  
probability that a continuous random variable X assumes a specific value x is taken  
to be zero.  
 
For a continuous random variable we deal with probabilities of intervals rather than 
probabilities of particular individual values. 
 
The probability distribution of continuous random variable X is characterised by a function f(x)  
known as the probability density function.  This function is not the same as the probability  
function in the discrete case.  Since the probability that X is equal a specific value is zero, the  
probability density function does not represent the probability that X = x.  Rather, it provides  
the means by which the probability of an interval can be determined. 
The function f (x) whose graph is the limiting curve is the probability density function of the 
continuous random variable X, provided that the vertical scale is chosen in such a way that the 
total area under the curve is one.  
 
Definition 
Let X be a continuous random variable.  If a function f (x) satisfies 
 
   1.   0xf ,≥)( −∞ < x < ∞ 
 

   2. 1dxxf =)(
∞

∞−
 

        and 

   3. P a X b f x dx
a

b
( ) ( )≤ ≤ =   

 
for any a and b, then f (x) is the probability density function of X. 
 
Note  
The third condition indicates how the function is used: 
The probability that X will assume some value in the interval [a, b] = the area under the curve 
between x = a and x = b. This is the shaded area as shown in the graph below. 
 

a b

Probability

Density

x

Function

P(a ≤ X ≤ b)
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In general the exact evaluation of areas requires us to use the probability density function f (x) 
and integral calculus. These calculations are time consuming and not straightforward. However, 
probability values can be obtained from statistical tables (just as for discrete probability 
distributions). 
 
 
16  The Normal Distribution 
 
The Normal Distribution is the most important and most widely used continuous probability  
distribution.  It is the cornerstone of the application of statistical inference in analysis of data  
because the distributions of several important sample statistics tend towards a Normal  
distribution as the sample size increases. 
 
Empirical studies have indicated that the Normal distribution provides an adequate  
approximation to the distributions of many physical variables.  Specific examples include  
meteorological data, such as temperature and rainfall, measurements on living organisms,  
scores on aptitude tests, physical measurements of manufactured parts, weights of contents  
of food packages, volumes of liquids in bottles/cans, instrumentation errors and other  
deviations from established norms, and so on. 
The graphical appearance of the Normal distribution is a symmetrical bell-shaped curve that  
extends without bound in both positive and negative directions: 
 
The probability density function is given by 

 

    f(x) =
1

2σ π
μ

σ μ σ
exp

( )
,

;

,
−

−











−∞ < < ∞
−∞ < < ∞ >

x x2

22 0
 

 
 

where μ and σ are parameters.  These turn out to be the mean and standard deviation, 
respectively, of the distribution.  As a shorthand notation, we write X ~ N(μ,σ2). 
 
The curve never actually reaches the horizontal axis buts gets close to it beyond about 3 
standard deviations each side of the mean. 
 
For any Normally distributed variable: 

 
 68.3% of all values will lie between μ σ−  and μ σ+  (i.e. μ σ± ) 
 95.45% of all values will lie within μ σ± 2  
 99.73% of all values will lie within μ σ± 3  
 

The graphs below illustrate the effect of changing the values of μ and σ on the shape of the 
probability density function. Low variability (σ = 0.71) with respect to the mean gives a 
pointed bell-shaped curve with little spread.  Variability of σ = 1.41 produces a flatter bell-
shaped curve with a greater spread. 
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17 Using Statistical Tables to Calculate Normal Probabilities 
 
Only one set of tabled values for the Normal distribution are available- this is for the Standard 
Normal variable, which has mean = 0 and standard deviation = 1. 
 
The calculation of Normal probabilities associated with a specified range of values of random 
variable X involves two steps: 
 
Step1  
Apply the transformation Z = (X − μ)/σ to change the basis of the probability calculation from 
X to Z, the standard Normal variable i.e. this expresses the probability calculation we need to 
carry out in terms of an equivalent probability calculation involving the Standard Normal 
variable (for which we have tabled values). 
 
Step2 
Use tables of probabilities for Z, together with the symmetry properties of the Normal 
Distribution to determine the required probability. 
 
Tables of the Standard Normal distribution are widely available. The version we will use is 
from Murdoch and Barnes, Statistical Tables for Science, Engineering, Management and 
Business Studies, in which the tabulated value is the probability P(Z > u) where u lies between 
0 and 4, i.e. the tables provide the probability of Z exceeding a specific value u, sometimes 
referred to as the right-hand tail probability.  
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18  Worked Examples on the Normal Distribution 
 
In the first set of examples, we learn how to use tables of the Standard Normal distribution. 
 
Example 1 Find P (z ≥ 1). 
 
Solution 
From Tables, we find that P (z ≥ 1) = 0.1587 
 
Example 2 Find P (z ≤ −1). 
Solution 
By symmetry, P (z ≤ −1) = P (z ≥ 1) = 0.1587. 

 
Example 3 Find P (−1 ≤ z ≤ 1). 
Solution 
P (−1 ≤ z ≤ 1) = 1 − [P (z ≤ −1) + P (z ≥ 1)] = 1 − [P (z ≥ 1)] + P (z ≥ 1)]  
                        =1− 0.1587 − 0.1587 = 0.6826. 
 
Example 4 Find P (− 0.62 ≤ z ≤ 1.3). 
Solution 
P (− 0.62 ≤ z ≤ 1.3) = 1 − [P (z ≤ − 0.62) + P (z ≥ 1.3)] = 1 − [P (z ≥ 0.62) + P (z ≥ 1.3)]  
= 1− [0.2676 + 0.0968] = 0.6356.  
 
In the next examples, we learn how to determine probabilities for Normal variables in 
general. 
 
Example 5 
The volume of water in commercially supplied fresh drinking water containers is 
approximately Normally distributed with mean 70 litres and standard deviation 0.75 litres.  
Estimate the proportion of containers likely to contain 

 
(i) in excess of 70.9 litres,   (ii)  at most 68.2 litres,   (iii)  less than 70.5 litres. 
 
Solution 
Let X denote the volume of water in a container, in litres. Then  X ~ N(70, 0.752),  i.e. μ  = 70, 
σ = 0.75 and  Z = (X − 70)/0.75 

 
(i)  X = 70.9 ;   Z = (70.9 − 70)/0.75 = 1.20.  P(X > 70.9) = P(Z > 1.20) = 0.1151 or 11.51% 

 
(ii)  X = 68.2  ;  Z = −2.40 . P(X < 68.2) = P(Z < −2.40) = 0.0082 or 0.82% 

 
(iii)  X = 70.5  ;  Z = 0.67  

 
  P(X > 70.5) = 0.2514  ;   P(X < 70.5) = 0.7486 or 74.86% 
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19  Problems on the Standard Normal Distribution 
 
In each of the following questions, Z has a Standard Normal Distribution. 
 
Obtain: 
 
1. Pr (Z > 2.0)  2. Pr (Z > 2.94)  3. Pr (Z < 1.75) 
 
4. Pr (Z < 0.33)  5. Pr (Z < −0.89)  6. Pr (Z < −1.96) 
 
7. Pr (Z > −2.61)  8. Pr (Z > −0.1)  9. Pr (1.37 < Z < 1.95) 

  
10. Pr (1 < Z < 2)  11. Pr (−1.55 < Z < 0.55)  
 
12. Pr (−3.1 < Z < −0.99) 13. Pr (−2.58 < Z < 2.58) 
 
14. Pr (−2.1 < Z < 1.31)  
 
Find the value of u such that 
 
15. Pr (Z > u) = 0.0307  16. Pr (Z < u) = 0.01539 
 
17. Pr (Z > u) = 0.2005  18. Pr (Z > u) = 0.8907 
 
19. Pr (Z < u) = 0.9901  20. Pr (−u < Z < u) = 0.9010 
 
 
Answers 
 
1.  0.02275 2. 0.00164 3. 0.9599  4. 0.6293 
 
5.  0.1867  6. 0.0250  7. 0.99547 8. 0.5398 
 
9.  0.0597  10. 0.13595 11. 0.2306  12. 0.16013 
 
13.  0.99012 14. 0.88704 15. 1.87  16. −2.16 
 
17.  0.84  18. −1.23  19. 2.33  20. 1.65 
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20 Problems on the Normal Distribution (General) 
 
1. The weights of bags of potatoes delivered to a supermarket are approximately Normally 

distributed with mean 5 Kg and standard deviation 0.2 Kg.  The potatoes are delivered in 
batches of 500 bags. 

 
(i) Calculate the probability that a randomly selected bag will weigh more than 5.5 

Kg. 
(ii) Calculate the probability that a randomly selected bag will weigh between 4.6 

and 5.5 Kg. 
   (iii) What is the expected number of bags in a batch weighing less than 5.5 Kg? 
 
 
2. A machine in a factory produces components whose lengths are approximately 
 Normally distributed with mean 102mm and standard deviation 1mm. 

 
         (i) Find the probability that if a component is selected at random and measured, its 
 length will be:    

 (a)  less than 100mm;  (b)  greater that 104mm. 

(ii) If an output component is only accepted when its length lies in the range 100mm 
to 104mm, find the expected proportion of components that are accepted. 

 
 
3. The daily revenue of a small restaurant is approximately Normally distributed with mean 

£530 and standard deviation £120.  To be in profit on any day the restaurant must take in 
at least £350. 

 
  (i) Calculate the probability that the restaurant will be in profit on any given day. 
 
  
 
 
Answers 
 
1. (i) 0.00621 (ii) 0.9710   (iii) 497 approximately 
 
2. (i) (a) 0.02275; (b) 0.02275 (ii)  0.9545 
 
3. (i) 0.9332  
 


